(m-1) x -my =3m - 1
2x - y = m + 5
Tìm các số nguyên M để hpt có nghiệm duy nhất (x, y) là các số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt trên có nghiệm duy nhất thì ĐK là:
\(\frac{1}{m}\ne\frac{m}{-2}\)
\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)
chắc vậy
\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)
Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)
Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (1) cho (2) ta được:
\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:
\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\)
\(x=\dfrac{m+4}{m^2+2}\)
Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...
a) Với \(m=0\) ta có:
\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).
Với \(m\ne0\), ta có:
\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)
Biện luận:
Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),
Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).
Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)
Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)
Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:
\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)
Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)
Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)
Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).
b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).
Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)
Vì y là số nguyên dương nên:
\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.
\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).
Vì x,y là các số nguyên dương nên x,y>0. Nên:
\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')
Mặt khác: \(5⋮\left(m+2\right)\)
\(\Rightarrow m+2\inƯ\left(5\right)\)
\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')
Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)
Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.
\(\left(2\right)\Rightarrow y=2x-m-5.\)
\(\left(1\right)\Rightarrow\left(m-1\right)x-m\left(2x-m-5\right)=3m-1.\)
\(\left(m+1\right)x=m^2+2m+1.\)
Để HPT có nghiệm duy nhất => m +1 \(\ne\)0 hay m \(\ne\)-1
=>\(x=m+1>0\Rightarrow m>-1\)
=> y =2( m+1) -m -5 =m -3 > 0 => m> 3
Suy ra số nguyên m > 3 thỏa mãn