Tìm tất cả số nguyên tố p lẻ sao cho 2p4 - p2 + 16 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p^n+144=a^2\left(a\in N\right)\)
\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)
Ta thấy : \(a-12+a+12=2a⋮2\)
\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)
\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)
Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$, \(y>x\)
\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)
Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.
Lời giải:
Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương
Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương
Nếu $p>3$ thì $p$ lẻ
$\Rightarrow p^2\equiv 1\pmod 4$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$
$p^2\equiv 1\pmod 3$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$
Từ $(1);(2)$ suy ra $p^2+11\vdots 12$
Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$
Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)
Vậy $p=3$
Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.
Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)
Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\)
\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)
giờ tìm ước á
Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương.
Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.
Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.
Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)
Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.