Cho tam giác ABC. Kẻ ba đường cao AD,BE,CF cắt nhau ở H
a) CM: tam giác BDF và tam giác BDH đồng dạng
b) CM: tam giác BHF và tam giác CHE đồng dạng
c) CM: HA.HD=HB.HE=HC.HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)
Bài làm:
a, \(\Delta AHF\&\Delta CHD\)Có:
\(\widehat{AHF}=\widehat{CHD}\left(đv\right),\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g.g\right)\)
\(\Rightarrow\frac{HA}{HC}=\frac{HF}{HD}\Rightarrow HA.HD=HC.HF\)
b, Sửa N thành B
\(\Delta BAD\&\Delta BCF\)Có:
\(\widehat{B}chung,\widehat{D}=\widehat{F}=90^o\)
\(\Rightarrow\Delta BAD\infty\Delta BCF\left(g.g\right)\)
\(\Rightarrow\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow BF.BA=BD.BC\)
c,Vì \(\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow\frac{BD}{BA}=\frac{BF}{BC}\)
\(\Delta BFD\&\Delta BCA\)Có:
\(\widehat{B}chung,\frac{BF}{BC}=\frac{BD}{BA}\)
\(\Rightarrow\)\(\Delta BFD\infty\Delta BCA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{BCA}\)
d, chưa nghĩ ra
Câu hỏi của Ngọc Duyên DJ - Toán lớp 8 - Học toán với OnlineMath
câu trả lời đã được đăng cách đây 2 ngày nhé
Hình bạn tự vẽ nha
a, Xét \(\Delta AHF\) và \(\Delta CHD\) có
\(\widehat{HFA}\)=\(\widehat{HDC}\)=\(90^o\)
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\Delta AHF\infty\Delta CHD\)( g-g)
\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow AH\cdot HD=CH\cdot HF\)
a) Xét ΔABD và ΔABC ta có:
\(\widehat{BDA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
→ΔABD ∼ ΔABC(g-g)(1)
Xét ΔDAC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{ADC}=\widehat{BAC}=90^0\)
→ΔDAC ∼ ΔABC(g-g)(2)
Từ (1) và (2)⇒ΔABD ∼ ΔDAC
b)Vì ΔABD ∼ ΔABC(1)
\(\rightarrow\dfrac{AB}{BD}=\dfrac{BC}{AB}\)
\(\rightarrow AB.AB=BD.BC\)
\(\Rightarrow AB^2=BD.BC\)
c)Vì Vì ΔABD ∼ ΔABC(1)
\(\rightarrow\dfrac{AB}{AD}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AD.BC\)
a: Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc ABD=góc CAD
=>ΔABD đồng dạng với ΔCAD
b: ΔABC vuông tại A
mà AD là đường cao
nên AB^2=BD*BC
c: S ABC=1/2*AB*AC=1/2*AD*BC
=>AB*AC=AD*BC
a, Xét tam giác ADC và tam giác BEC ta có
^C _ chung
^ADC = ^BEC = 900
Vậy tam giác ADC ~ tam giác BEC (g.g)
b, => ^DAC = ^EBC ( 2 góc tương ứng )
Xét tam giác HAE và tam giác HBD ta có
^AHE = ^BHD ( đối đỉnh )
^HAE = ^HBD (cmt)
Vậy tam giác HAE ~ tam giác HBD (g.g)
\(\dfrac{AH}{HB}=\dfrac{HE}{DH}\Rightarrow AH.DH=HE.HB\)
hình bạn tự vẽ nha
a, Xét \(\Delta AHF\)và \(\Delta CHD\)có
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g\cdot g\right)\)\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow HA\cdot HD=HC\cdot HF\)
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
Em tự vẽ hình nhé!
a. Đề sai vì tam giác BDH là tam giác vuông còn BDF là tam giác thường.
b. Xét tam giác BHF và tam giác CHE có:
\(\widehat{BFH}=\widehat{CEH}=90^o\left(gt\right)\)
\(\widehat{FHB}=\widehat{EHC}\) (đối đỉnh)
Do đó tam giác BHF đồng dạng tam giác CHE (g.g)
c. Xét tam giác AHE và tam giác BHD có:
\(\widehat{E}=\widehat{D}=90^o\)
\(\widehat{AHE}=\widehat{BHD}\) (đối đỉnh)
Do đó tam giác AHE đồng dạng tam giác BHD (g.g)
\(\Rightarrow\dfrac{HA}{HB}=\dfrac{HE}{HD}\Leftrightarrow HA.HD=HE.HB\) (1)
Tương tự có tam giác AFH đồng dạng tam giác CDH (g.g)
\(\Rightarrow\dfrac{HA}{HC}=\dfrac{HF}{HD}\Leftrightarrow HA.HD=HC.HF\left(2\right)\)
Từ (1), (2) có: \(HA.HD=HB.HE=HC.HF\)