tìm số tự nhiên x thỏa mãn 5x - 7=23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: A
Ta có 5x−46:23=18
5x–2=18
5x=18+2
5x=20
x=20:5
x=4
Vậy x=4.
Do đó x là số chẵn.
Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)
\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)
THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.
a) \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)
a. \(\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=3\end{matrix}\right.\)
b. \(\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=3\end{matrix}\right.\)
=> 5x - 7 = 8
=> 5x = 8 + 7
=> 5x = 15
=> x = 3
5x - 7 = \(2^3\)
5x - 7 = 8
5x = 8 + 7
5x = 15
x = 15 : 5
x = 3
pr hộ mình nha m.n!