Một miếng đất hình chữ nhật có chiều dài hơn chiều rộng 8 m. Nếu tăng cả CD và CR thêm 4m thì
diện tích tăng 264m2. Tính diện tích ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm bằng cách lớp 9 nhé :v
Gọi chiều dài và chiều rộng lần lượt là x , y ( x,y > 0 ; x,y thuộc N )
Chiều dài gấp 3 lần chiều rộng : \(x=3y\left(1\right)\)
Tăng chiều rộng 2m và giảm chiều dài 4m thì diện tích tăng thêm 28m2 :
\(\left(x-4\right)\left(y+2\right)=xy+28\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x=3y\left(3\right)\\\left(x-4\right)\left(y+2\right)=xy+28\left(4\right)\end{cases}}\)
\(\left(4\right)< =>\left(x-4\right)\left(y+2\right)=xy+28\)
\(< =>\left(3y-4\right)\left(y+2\right)=3y^2+28\)
\(< =>3y^2+6y-4y-8=3y^2+28\)
\(< =>\left(3y^2+2y-8\right)-\left(3y^2+28\right)=0\)
\(< =>2y-8-28=0< =>2y-36=0\)
\(< =>2y=36< =>y=\frac{36}{2}=18\left(5\right)\)
Thay 5 vào 3 ta được : \(x=3y< =>x=18.3=54\)
Vậy chiều dài và chiều rộng lần lượt là : 54,18
Gọi chiều rộng ban đầu là x ( x> 0; m )
=> Chiều dài ban đầu là: 3x ( m )
Diện tích ban đầu là: x . 3x = 3x^2 ( m^2 )
Tăng chiều rộng lên 2m ta được: x + 2 ( m )
Giảm chiều dài đi 4 m ta được: 3x - 4 (m )
Diện tích mới là: ( x + 2 ) ( 3x - 4 ) m^2 '
Vì diện tích tăng thêm 28m^2 nên ta có phương trình:
3x^2 + 28 = ( x + 2 ) ( 3x - 4 )
Giải ra ta tìm được: x = 18 m
Vậy diện tích ban đầu của miếng đất là: 3.18^2 = 972 ( m^2)
Gọi chiều rộng miếng đất HCN là: x
Chiều dài miếng đất HCN là: 3x
Diện tích miếng đất là: x.3x = 3x2
Theo đề ra, ta có phương trình:
(x + 2)(3x - 4) = 3x2 + 28
<=> 3x2 + 2x - 8 = 3x2 + 28
<=> 3x2 - 3x2 + 2x = 28 + 8
<=> 2x = 36
<=> x = 18
Vậy chiều rộng mảnh đất là 18 m, chiều dài mảnh đất là 18.3 = 54 m
Diện tích mảnh đất ban đầu là: 18.54 = 972 m2
Nửa chu vi miếng đất là:
\(56:2=28m\)
Gọi chiều rộng của miếng đất là \(x\left(0< x< 28\right)\)
\(\rightarrow\)Chiều dài của miếng đất là \(28-x\)
\(\rightarrow\)Chiều rộng miếng đất khi giảm đi 2 mét là \(x-2\)
\(\rightarrow\)Chiều dài miếng đất khi tăng thêm 4 mét là \(28-x+4=32-x\)
Theo đề cho, ta có phương trình sau:
\(\left(x-2\right)\left(32-x\right)-x\left(28-x\right)=8\)
\(\Leftrightarrow32x-x^2-64+2x-28x+x^2=8\)
\(\Leftrightarrow32x-28x+2x-x^2+x^2=64+8\)
\(\Leftrightarrow6x=72\Leftrightarrow x=12\)
Vậy chiều dài của miếng đất là \(28-a=28-12=16m\)
Gọi chiều dài hình chữ nhật là a, chiều rộng hình chữ nhật là và S là diện tích
Ta có: a-b=8m
Khi tăng cả a và b lên 4 m thì:
(a+4)x(b+4)=S+264
=> (a+4)xb+(a+4)x4=S+264
=> axb+4xb+ax4+16=axb+264
=> (b+8)xb+4xb+(b+8)x4+16=(b+8)xb+264
=> bxb+8xb+4xb+bx5+32+16=bxb+8xb+264
=> (bxb-bxb)+(8xb-8xb)+9xb=264-32-16
=> 9xb=216
=> b=216:9=24 (m)
Vậy chiều rộng hình chữ nhật bằng 24m
=> Chiều dài hình chữ nhật bằng: 24+8=32 (m)
Vậy diện tích hình chữ nhật ban đầu là:
32x24=768(m2)
Lời giải:
Chiều dài mảnh đất:
$150:5=30$ (m)
Nếu chiều dài tăng thêm 4m thì chiều dài mới là: $30+4=34$ (m)
Gọi chiều rộng ban đầu là $x$ (m).
Diện tích ban đầu: $30\times x$ (m2)
Diện tích sau khi thay đổi: $34\times (x+5)$ (m2)
$34\times (x+5)-30\times x=250$
$34\times x+170-30\times x=250$
$4\times x+170=250$
$4\times x=80$
$x=80:4=20$ (m)
Diện tích ban đầu: $20\times 30=600$ (m2)
Gọi chiều dài, chiều rộng lần lượt là a,b
theo đề, ta có: a-b=8 và (a+4)(b+4)=ab+264
=>a-b=8 và 4a+4b=248
=>a=35 và b=27
S=35*27=945m2