K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2023

A = \(\dfrac{7^{2000}+1}{7^{2021}+1}\) ⇒ 7A = \(\dfrac{7^{2021}+7}{7^{2021}+1}\) = 1 + \(\dfrac{6}{7^{2021}+1}\) 

B = \(\dfrac{7^{2021}+1}{7^{2022}+1}\) ⇒ 7B = \(\dfrac{7^{2022}+7}{7^{2022}+1}\) = 1 + \(\dfrac{6}{7^{2022}+1}\) 

Vì \(\dfrac{6}{7^{2021}+1}\) > \(\dfrac{6}{7^{2022}+1}\) nên 7A > 7B (phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn)

7A > 7B

A>B

28 tháng 5 2023

A<B nhé

21 tháng 2 2016

Ta có: \(17A=17.\left(\frac{17^{2001}+1}{17^{2002}+1}\right)=\frac{17^{2002}+17}{17^{2002}+1}=\frac{17^{2002}+1+16}{17^{2002}+1}=1+\frac{16}{17^{2002}+1}\)

\(17B=17.\left(\frac{17^{2000}+1}{17^{2001}+1}\right)=\frac{17^{2001}+17}{17^{2001}+1}=\frac{17^{2001}+1+16}{17^{2001}+1}=1+\frac{16}{17^{2001}+1}\)

Vì 1 = 1 và 16 = 16 nên so sánh mẫu:

172002 + 1 > 172001 + 1

=> \(1+\frac{16}{17^{2002}+1}<1+\frac{16}{17^{2001}+1}\)

=> 17A < 17B

=> A < B.

21 tháng 2 2016

Ta có:\(17^{2001}>17^{2000},1=1\) Còn \(\frac{1}{17^{2002}},\frac{1}{17^{2001}}\) thì ko quan trọng chúng đều nhỏ hơn 1

Nên A>B

21 tháng 9 2016

không hiểu kí hiệu ^ là gì đâu

21 tháng 9 2016

A! Đối với lớp mình và máy tính thì ^ chính là mũ ạ 

11 tháng 4 2018

Ta có : 

\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)

\(A=3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

\(A=3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=3\left(\frac{1}{4}-\frac{1}{100}\right)\)

\(A=3.\frac{6}{25}\)

\(A=\frac{18}{25}\)

Vậy \(A=\frac{18}{25}\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)

\(\Rightarrow A=3.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{3.24}{100}\)

\(=\frac{3.4.6}{25.4}\)

\(\Rightarrow A=\frac{18}{25}\)

19 tháng 5 2021

Đáp án là B lớn hơn A nha

                                                                 NHỚ K CHO MIK NHA MY FRIEND :>

4 tháng 5 2018

a, ( 1+4+7+...+100 ) = 1717 

1717 : a = 17 

=> a = 101 

4 tháng 5 2018

c, Lấy 1 trừ cho cả 2 vế

1-2000/2001 = 1/2001 

1-2001/2002 = 1/2002 

=> 1/2001 > 1/2002

20 tháng 6 2018
  •  13/27 và 7/15
    \(\frac{13}{27}\) = 1:\(\frac{27}{13}\)= 1: \(\frac{26+1}{13}\) = 1: ( 2+\(\frac{1}{13}\))
    \(\frac{7}{15}\)= 1:\(\frac{15}{7}\)= 1: \(\frac{14+1}{7}\)= 1: ( 2+ \(\frac{1}{7}\))
    ta có \(\frac{1}{13}\)\(\frac{1}{7}\)=>   2+\(\frac{1}{13}\)< 2+ \(\frac{1}{7}\) => 1: ( 2+\(\frac{1}{13}\)) >  1: ( 2+ \(\frac{1}{7}\))

    vậy \(\frac{13}{27}\)>\(\frac{7}{15}\)

  •  2000/2001 và 2001/2002
    \(\frac{2000}{2001}\)\(\frac{2001-1}{2001}\)= 1 - \(\frac{1}{2001}\)
    \(\frac{2001}{2002}\)\(\frac{2002-1}{2002}\)= 1 - \(\frac{1}{2002}\)
    ta có \(\frac{1}{2001}\)\(\frac{1}{2002}\) =>  1 - \(\frac{1}{2001}\) <  1 - \(\frac{1}{2002}\)
    vậy  \(\frac{2000}{2001}\)\(\frac{2001}{2002}\)