Cho nửa đường tròn tâm (O), đường kính AB=2R. Vẽ dây AD=R và BC=R\(\sqrt{2}\). Kẻ AM và BN vuông góc với đường thẳng DC.
a)So sánh DM VÀ CN
b)Tính MN theo R
c)Chứng minh rằng SAMNB=SABD + SACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).
\(\hat{BCM}=90^o\left(gt\right)\)
Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).
b. Xét △ADB và △ACM :
\(\hat{ADB}=\hat{ACM}=90^o\)
\(\hat{A}\) chung
\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).
c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.
\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)
\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).
\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)
\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)
\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)
\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)
a: góc CMD=1/2*180=90 độ
góc CMF+góc CKF=180 độ
=>CKFM nội tiếp
b: Xét ΔDAF và ΔDMA có
góc DAF=góc DMA
góc ADF chung
=>ΔDAF đồng dạngvới ΔDMA
=>DA/DM=DF/DA
=>DA^2=DM*DF