\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+6\sqrt{x}+9}{9-x}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với x≥0;x≠9
rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2\sqrt{x}+6}{x-9}\right):\dfrac{x-2\sqrt{x}}{\sqrt{x}-3}\left(x>3;x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{\sqrt{x}-3}{x-2\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left( \sqrt{x}+3\right)}-\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{x-2\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{x+3\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x-2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{1}{x-2\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{1}{\sqrt{x}}\)
`A=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)(3-sqrtx)(x>=0,x ne 4, x ne 9)`
`=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)(sqrtx-3)`
`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`
`A=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4, x ne 9)`
`=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`
a) \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=-\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
b) \(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
Thế vào B \(\Rightarrow B=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)
a) Ta có: \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-x+4\sqrt{x}-4}\)
\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)
a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)
b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)
g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)
a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)
b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+6\sqrt{x}+9}{9-x}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\left(dkxd:x\ge0,x\ne9\right)\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)-\left(x+6\sqrt{x}+9\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-6\sqrt{x}-x-6\sqrt{x}-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-9\sqrt{x}-9}{x-9}\) với \(x\ge0,x\ne9\)