2) Tìm y:
1 -(\(\dfrac{12}{5}\) + y - \(\dfrac{8}{9}\)) : \(\dfrac{16}{9}\) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
Bài 1:
a) \(\dfrac{19}{12}+\left|\dfrac{-5}{2}\right|+\left(\dfrac{3}{2}\right)^2=\dfrac{19}{12}+\dfrac{5}{2}+\dfrac{9}{4}\)
\(=\dfrac{19+5.6+9.3}{12}=\dfrac{76}{12}=\dfrac{19}{3}\)
b) \(\dfrac{2}{11}.\dfrac{16}{9}-\dfrac{2}{11}.\dfrac{7}{9}=\dfrac{2}{11}\left(\dfrac{16}{9}-\dfrac{7}{9}\right)=\dfrac{2}{11}.1=\dfrac{2}{11}\)
Bài 2:
Áp dụng t/c dtsbn:
\(\dfrac{a}{8}=\dfrac{b}{3}=\dfrac{a-b}{8-3}=\dfrac{55}{5}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.8=88\\b=11.3=33\end{matrix}\right.\)
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
a: \(=\dfrac{8}{9}\cdot\dfrac{9}{4}\cdot\dfrac{12}{19}\cdot\dfrac{19}{24}=\dfrac{1}{2}\cdot2=1\)
b: \(=\dfrac{5}{16}\cdot\dfrac{17}{15}\cdot\dfrac{8}{17}=\dfrac{5}{16}\cdot\dfrac{8}{15}=\dfrac{40}{240}=\dfrac{1}{6}\)
c: \(=\dfrac{4}{13}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)-\dfrac{3}{26}=\dfrac{4}{13}-\dfrac{3}{26}=\dfrac{5}{26}\)
c: \(=\dfrac{3}{4}\left(\dfrac{6}{11}+\dfrac{5}{11}\right)-\dfrac{1}{5}=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{11}{20}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
2/ Tìm y:
y + \(\dfrac{1}{3}\) x 4 = 12 \(\dfrac{2}{5}\) + y = \(\dfrac{12}{35}\) x \(\dfrac{14}{9}\)
\(y=12-\left(\dfrac{1}{3}\times4\right)=12-\dfrac{4}{3}=\dfrac{32}{3}\)
\(y=\left(\dfrac{12}{35}\times\dfrac{14}{9}\right)-\dfrac{2}{5}=\dfrac{8}{15}-\dfrac{2}{5}=\dfrac{2}{15}\)
\(1-\left(\frac{12}{5}+y=\frac{8}{9}\right):\frac{16}{9}=0\)
\(1-\left(\frac{12}{5}+y-\frac{8}{9}\right)=0\times\frac{16}{9}\)
\(1-\left(\frac{12}{5}+y-\frac{8}{9}\right)=0\)
\(\frac{12}{5}+y-\frac{8}{9}=1-0\)
\(\frac{12}{5}-y+\frac{8}{9}=1\)
\(\frac{12}{5}-y=1-\frac{8}{9}\)
\(\frac{12}{5}-y=\frac{1}{9}\)
\(y=\frac{12}{5}-\frac{1}{9}\)
\(y=\frac{108}{45}-\frac{5}{45}\)
\(y=\frac{103}{45}\)