Tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x^2-7x-2\sqrt{2x-4}+2038}{\sqrt{x-3}+\sqrt{5-x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Tử }=\left(x^2-8x+16\right)+\left(x-2-2\sqrt{x-2}.\sqrt{2}+2\right)+2022\)
\(=\left(x-4\right)^2+\left(\sqrt{x-2}-\sqrt{2}\right)^2+2022\ge2022\)
Dấu "=" xảy ra khi \(x-4=0\text{ và }\sqrt{x-2}=\sqrt{2}\Leftrightarrow x=4\).
\(\text{Mẫu }=\sqrt{x-3}+\sqrt{5-x}\)
Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2\)
Dấu "=" xảy ra khi a = b.
\(\Rightarrow\left(\sqrt{x-3}+\sqrt{5-x}\right)^2\le2\left(x-3+5-x\right)=4\)
\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}\le2\)
Dấu "=" xả ra khi \(\sqrt{x-3}=\sqrt{5-x}\Leftrightarrow x=4\)
\(\Rightarrow Q\ge\frac{2022}{2}=1011\)
Dấu "=" xảy ra khi x = 4.
Vậy GTNN của Q là 1011 khi x = 4.
\(D=\sqrt{\left(x+\sqrt{3}\right)^2}+\sqrt{\left(x-\frac{1}{2}\right)^2}\)
\(D=|x+\sqrt{3}|+|x-\frac{1}{2}|=|x+\sqrt{3}|+|\frac{1}{2}-x|\ge|x+\sqrt{3}+\frac{1}{2}-x|\)
=sqrt(3)+1/2.
Vậy giá trị nhỏ nhất cần tìm là: sqrt(3)+1/2. Dấu bằng thì bạn tham khảo bất đẳng thức:
lal+lbl geq la+bl
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)