1. Thực hiện phép tính :
\(A=\frac{4}{\sqrt{3}-1}-\frac{2}{\sqrt{2}+\sqrt{3}}-\sqrt{8}\)
2. Xác định đường thẳng y = ax + b biết rằng đường thẳng này song song với đường thẳng y = -3x + 5 và cắt parabol \(y=2x^2\) tại điểm A có hoành độ bằng -1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-3+n=-3\\-2m+n+6=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+n=0\\-2m+n=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m=3\\m+n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\)
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
1.
\(A=\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{2\left(\sqrt{2}-\sqrt{3}\right)}{2-3}-\sqrt{8}\)
\(A=\frac{4\left(\sqrt{3}+1\right)}{2}-\frac{2\sqrt{2}-2\sqrt{3}}{-1}-2\sqrt{2}\)
\(A=2\left(\sqrt{3}+1\right)+2\sqrt{2}-2\sqrt{3}-2\sqrt{2}\)
\(A=2\sqrt{3}+2-2\sqrt{3}\)
\(A=2\)
2. Đặt (D): y = ax + b (a khác 0)
(D1): y = -3x + 5
- Vì (D) // (D1): y = -3x+5 \(\Rightarrow\hept{\begin{cases}a=-3\\b\ne5\end{cases}}\)
- Vì (D) cắt (P): y = 2x^2 tại điểm A có hoành độ là -1 \(\Rightarrow x=-1\)
Thay x = -1 vào: y = 2x^2 = 2.(-1)^2 = \(2\)
Thay \(a=-3;x=-1;y=2\)vào:
\(ax+b=y\)
\(\Leftrightarrow-3.\left(-1\right)+b=2\)
\(\Leftrightarrow3+b=2\)
\(\Leftrightarrow b=-1\left(TMĐK\right)\)
Vậy: \(\left(D\right):y=-3x-1\)