K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2023

A = $\frac{2 + \sqrt{2}}{1 + \sqrt{2}}$

Để rút gọn biểu thức này, ta nhân tử và chia tử cho $1 - \sqrt{2}$:

A = $\frac{(2 + \sqrt{2})(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}$

A = $\frac{-2\sqrt{2}}{-1}$

A = $2\sqrt{2}$

C = $\frac{2\sqrt{3} - \sqrt{6}}{\sqrt{8} - 2}$

Ta nhân tử và chia tử cho $\sqrt{2}$:

C = $\frac{(2\sqrt{3} - \sqrt{6})\sqrt{2}}{(\sqrt{8} - 2)\sqrt{2}}$

C = $\frac{4\sqrt{6} - 2\sqrt{3}}{2\sqrt{2}}$

C = $\frac{2\sqrt{6} - \sqrt{3}}{\sqrt{2}}$

Ta nhân tử và chia tử cho $\sqrt{6} + \sqrt{2}$:

C = $\frac{(2\sqrt{6} - \sqrt{3})(\sqrt{6} + \sqrt{2})}{(\sqrt{2})(\sqrt{6} + \sqrt{2})}$

C = $\frac{12 - 3\sqrt{2}}{2}$

C = $6 - \frac{3\sqrt{2}}{2}$

E = $\frac{x\sqrt{x+1}}{\sqrt{x+1}}$

E = $x\sqrt{\frac{x+1}{x+1}}$

E = $x$.

22 tháng 5 2023

A = (2 + √2)/(1 + √2)

= √2(√2 + 1)/(1 + √2)

= √2

C = (2√3 - √6)/(√8 - 2)

= √6(√2 - 1)/[2(√2 - 1)]

= √6/2

E = (x√x + 1)/(√x + 1)

= (√x + 1)(x - √x + 1)/(√x + 1)

= x - √x + 1

16 tháng 7 2021

\(A=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\left(x>0,x\ne1\right)\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

\(=\dfrac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)

\(B=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4;9\right)\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(C=\left(\dfrac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)

\(=\dfrac{x+\sqrt{x}-1-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\dfrac{3\sqrt{x}-2}{x+\sqrt{x}+1}\)

 

 

15 tháng 4 2022

\(a,A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)

\(=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{2^2-\sqrt{3}^2}\)

\(=\dfrac{4}{1}=4\)

Vậy \(A=4\)

\(b,B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\left(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) với \(x>0,x\ne1\)

a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)

b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

2)

a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:

\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)

b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)

5 tháng 2 2022

a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

b, với x > 0 

\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)

\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)

a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)

\(=14\sqrt{2x}+30\)

b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)

\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)

\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

22 tháng 8 2021

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{x\sqrt{x}+y\sqrt{y}-\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)( do \(x\ge1\))

a: Ta có: \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

b: Ta có: \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\dfrac{ \left|\sqrt{x}-1\right|}{\left|\sqrt{x}+1\right|}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

29 tháng 5 2022

\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\);\(ĐK:x\ge0;x\ne1\)

\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(A=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-2\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(A=\left(\dfrac{-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

 

 

29 tháng 5 2022

\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right).\left(\sqrt{x-1}\right)\left(đk:x\ne1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right).\left(\sqrt{x}-1\right)\)

\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\dfrac{-\sqrt{x}}{\sqrt{x}+1}.\left(\sqrt{x}-1\right)\\ A=\dfrac{-x+\sqrt{x}}{\sqrt{x}+1}\)