K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)

hay \(n\left(n-1\right)\left(n+1\right)⋮6\)

9 tháng 6 2017

   n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
   (n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)

13 tháng 9 2017

Bằng 3(-n^2-1) 

Ls

16 tháng 9 2017

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)\)

Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\)\(\forall n\in Z\).

16 tháng 9 2017

thay các số bắt đầu từ 1 vào r tính sau cứ như thế vd lấy 1 số cao như 1000 chẳng hạn

28 tháng 9 2021

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2+n+6\)

\(=6n+6=6\left(n+1\right)⋮6\forall n\in Z\)

23 tháng 9 2016

    n2 ( n + 1) +2n (n + 1 )

       = n (n + 1 ) ( n + 2 )

        Vì n ; n + 1 ; n + 2 là các số tự nhiên liên tiếp

           \(\Rightarrow\) n ( n + 1 ) ( n + 2 ) chia hết cho 6

            Vậy n2 ( n + 1 ) ( n + 2 ) luôn chia hết cho 6 với mọi giá trị của n

23 tháng 9 2016

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

7 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên

16 tháng 8 2017

VT = x^2 + 5x - ( x^2 - x -6)

= x^2 + 5x - x^2 + x +6

= 6x +6 = 6.(x+1) chia hết cho 6 với mọi n là số nguyên

16 tháng 9 2017
Ta có n(n+5)-(n-3)(n+2)=n²+5n-(n²-3n+2n-6) =n²+5n-n²+3n-2n+6 =6n+6 Tổng trên có hai hạng tử mà mỗi hạng tử đều chia hết cho 6 nên tổng chia hết cho 6 Vậy n(n+5)-(n-3)(n+2) luôn luôn chia hết cho 6 với mọi n là số nguyên