Cho tam giác ABC nhọn (AB>AC),nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C cắt nhau . Gọi H là giao điểm của OM và BC .Từ M kẻ đường thẳng song song với AC,đường thẳng song song cắt tại E và F (E thuộc cung nhỏ BC),cắt BC tại I ,cắt AB tại K.
a)Chứng minh:MO⊥BC và ME.MF=MH.MO
b)Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp.Từ đó suy ra năm điểm M,B,K,O,C cùng thuộc một đường tròn.
a: Xét (O) có
MB,MC là tiếp tuyến
=>MB=MC
mà OB=OC
nên OM là trung trực của BC
Xét ΔMEB và ΔMBF có
góc MBE=góc MFB
góc EMB chung
=>ΔMEB đồng dạng với ΔMBF
=>MB^2=ME*MF=MH*MO