K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

bạn tk mình một lần cho mình biết đi mình chưa được ai tk lần nào

10 tháng 5 2017

Nhưng bn phải trả lời chứ

13 tháng 8 2015

a)  \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)

B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)

BÀI 2:

A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)

\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)

\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)

\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)

b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)

\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)

ngoặc 1 có 99 số hạng x

\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3.\frac{99}{100}=1\)

\(\Leftrightarrow99x=1+\frac{3.99}{100}\)

\(\Leftrightarrow99x=\frac{397}{100}\)

\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)

 

6 tháng 5 2018

=>\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)=\frac{1}{8}\)

=>\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)

=>\(\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

=>\(\frac{1}{2x}=\frac{1}{4}\)

=> \(2x=4\)

=> \(x=2\)

1 tháng 5 2019

\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

26 tháng 6 2019

TL:
\(\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{\left(2x-2\right)2x}\right)=\frac{1}{8}\)  

\(\frac{1}{2}-\frac{1}{4x}=\frac{1}{8}\) 

\(\frac{1}{4x}=\frac{3}{8}\) 

=>x=2/3

hc tốt

16 tháng 6 2020

\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)

Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)

\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)

\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)

\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)

\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)

Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)

\(\Leftrightarrow8x-8=4\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)

Vậy không có x thỏa mãn yêu cầu đề bài

3 tháng 5 2018

\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+............+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{\left(2.4\right)^2}+\frac{6^2-4^2}{\left(4.6\right)^2}+..........+\frac{98^2-96^2}{\left(96.98\right)^2}+\frac{100^2-98^2}{\left(98.100\right)^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-...............-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{10000}\)

\(B=\frac{2500}{10000}-\frac{1}{10000}\)

\(B=\frac{2499}{10000}\)

Vậy B = \(\frac{2499}{10000}\)