K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

10 tháng 4 2018

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

Câu 2: 

a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:

m+1=2

hay m=1

Vậy: m=1

22 tháng 5 2015

a) (P) là parabol đi qua gốc toạ độ O(0; 0) ; điểm (1; 1/2) và điểm (-1;1/2)

b) A \(\in\) (P) => yA = \(\frac{1}{2}\). xA2 = \(\frac{1}{2}\). (-1)2 = \(\frac{1}{2}\)=> A (-1; \(\frac{1}{2}\))

B \(\in\) (P) => yB = \(\frac{1}{2}\).xB2 = \(\frac{1}{2}\).4 = 2 => B (2; 2)

+) đường thẳng có hệ số góc bằng \(\frac{1}{2}\) có dạng y = \(\frac{1}{2}\)x + b      (d)

\(\in\) d => yA = \(\frac{1}{2}\).xA + b => \(\frac{1}{2}\) = \(\frac{1}{2}\). (-1) + b => b = 1

Vậy đường thẳng (d) có dạng y = \(\frac{1}{2}\)x + 1

Nhận xét: yB = \(\frac{1}{2}\).xB + 1 => B \(\in\)  (d)

b: Tọa độ giao điểm là:

2x-1=x+2 và y=x+2

=>3x=3 và y=x+2

=>x=1 và y=3

a: loading...