Cho đường tròn \(\left(C\right):\left(x+1\right)^2+\left(y-2\right)^2=25\) và điểm \(A\left(3;0\right)\). Viết phương trình đường thẳng \(\left(\Delta\right)\) qua \(A\) và cắt đường thẳng \(\left(C\right)\) theo dây cung \(MN\) sao cho:
a) \(MN\) lớn nhất
b) \(MN\) nhỏ nhất
a: MN lớn nhất
=>MN là đường kính
=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)
Ta có hệ pt:
3a+b=0 và -a+b=2
=>a=-1/2 và b=1/2
b: Kẻ IH vuông góc MN
MN nhỏ nhất khi H trùng với A
=>vecto IA=(4;-2)
Δ có phương trình là:
4(x-3)+(-2)(y-0)=0
=>4x-12-2y=0
fdbxdg