so sánh a.2021/2022 và 22/21 b.a/b và a/b+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17/21>17/29>15/29 (tự KL) b)(chép đề) B= (20+21)/(21+22)=41/43<1 (chép đề sai). Xét A= 20/21+21/22=1-1/21+1-1/22=1+1-(1/21+1/22). Ta thấy (1/21+1/22)<1 nên 1-(1/21+1/22)>0
17/21>17/29>15/29 (tự KL)
b)(chép đề)
B= (20+21)/(21+22)=41/43<1 (chép đề sai).
Xét A= 20/21+21/22=1-1/21+1-1/22=1+1-(1/21+1/22).
Ta thấy (1/21+1/22)<1
nên 1-(1/21+1/22)>0
Vậy 1+1-(1/21+1/22)>1+0>1
Vậy A>B
Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$
Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)
Ta có:
\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )
Suy ra: \(A>B\)
a) < b) <
a2021/2022<22/21
b.a/b>a/b+1