K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

\(B=\frac{215-2}{2015^m}+\frac{2015+2}{2015^n}=\frac{2015}{2015^m}-\frac{2}{2015^m}+\frac{2015}{2015^n}+\frac{2}{2015^n}=A-2\left(\frac{1}{2015^m}-\frac{1}{2015^n}\right)\)

+ Nếu \(m>n\Rightarrow2015^m>2015^n\Rightarrow\frac{2}{2015^m}<\frac{2}{2015^n}\Rightarrow\frac{2}{2015^m}-\frac{2}{2015^n}<0\Rightarrow A-\left(\frac{2}{2015^m}-\frac{2}{2015^n}\right)>A\)

=> A<B

+ Nếu

m<n làm tương tự => A>B

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

13 tháng 4 2017

Ta có: \(M=\frac{2017^{2015}+1}{2017^{2015}-1}=\frac{2017^{2015}-1+2}{2017^{2015}-1}=1+\frac{2}{2017^{2015}-1}\)

\(N=\frac{2017^{2015}-5}{2017^{2015}-3}=\frac{2017^{2015}-3-2}{2017^{2015}-3}=1-\frac{2}{2017^{2015}-3}\)

Vì \(\frac{2}{2017^{2015}-1}>-\frac{2}{2017^{2015}-3}\)nên M>N

13 tháng 4 2017

M>N vì:

phân số M>1

phân số N<1

16 tháng 3 2017

M~1+1+1=3

N~1

=> M>N

16 tháng 3 2017

m=n m>n m<n 1 trong 3 chắc chắn đúng ahihi =)))
 

26 tháng 4 2016

a)

A=B

b)

N>M

26 tháng 4 2016

a, A và B bằng nhau

b, N>M

30 tháng 3 2016

Ta có:

\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)

\(\Rightarrow M>N\)

30 tháng 3 2016

Ta có: \(N=\frac{2013+2014}{2014+2015}<1\);

          \(M=\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2015}+\frac{2014}{2015}=\frac{4027}{2015}>1\)

\(\Rightarrow A>B\)

27 tháng 1 2016

\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)

\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)

\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Vậy M>N