K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

1/2.(1/3+1/6+1/10+...+1/x(x+1))=1/2.2016/2018

1/6+1/12+1/20+...+1/x(x+1)=504/1009

1/2.3+1/3.4+1/4.5+...+1/x(x+1)=504/1009

1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=504/1009

1/2-1/x+1=504/1009

x-1/2(x+1)=504/1009

-> 1009(x-1)=504.2(x+1)

1009x-1009=1008x+1008

1009x-1008x=1008+1009

->x=2017

10 tháng 5 2017

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2016}{2018}\)
\(A=\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{x\left(x+1\right):2}\)
\(A=\frac{1}{2\left(2+1\right)}\cdot2+\frac{1}{3\left(3+1\right)}\cdot2+...+\frac{1}{x\left(x+1\right)}.2=\frac{2016}{2018}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{2018}\)
\(A=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2018}\)
\(A=1-\frac{1}{x+1}=\frac{2016}{2018}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2016}{2018}=\frac{1}{1009}\)
\(\Rightarrow x+1=1009\Rightarrow x=1008\)

6 tháng 4 2018

\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)=  \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)

=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)

=> \(x=10\)

b) Tương tự câu a

3 tháng 7 2018

Câu b:

\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)

\(\frac{63}{20}+\frac{3}{5}\)

\(\frac{15}{4}\)

7 tháng 7 2018

\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)

\(\frac{25}{8}:\frac{5}{6}\)

\(\frac{25}{8}.\frac{6}{5}\)

\(\frac{30}{8}\)

21 tháng 7 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{x\left(x+1\right)}=\frac{215}{216}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{215}{216}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{215}{216}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{215}{216}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{216}\)

\(\Leftrightarrow x=216-1=215\)

20 tháng 4 2016

nhân cả 2 vế của đẳng thức với 1/2 ta được

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-......+\frac{1}{x}-\frac{1}{x+1}=\frac{2014}{2015}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2014}{2015}\)

\(=>\frac{1}{x+1}=\frac{1}{2}-\frac{2014}{2015}\)

        \(\frac{1}{x+1}=-\frac{2013}{4030}\)

hay \(1:\left(x+1\right)=-\frac{2013}{4030}\)

       \(x+1=-\frac{4030}{2013}\)

\(=>x=-\frac{6043}{2013}\)


 

21 tháng 7 2017

Bài 1 : 

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)

\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)

\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)

\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)

\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)

\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)

Bài 2 : 

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

15 tháng 7 2017

a) => 4x + 2/3 = 0 hoặc 2/3x - 1 =0 

4x= -2/3 hoặc 2/3x= 1

x = -2/3 . 1/4 hoặc x = 1.3/2

x = -1/6 hoặc x = 3/2 

b) x+2 / x -1 = 5/2 

=> 2(x+2) = 5(x-1)

2x + 4 = 5x - 5

5x - 2x= 4+5

3x = 9

=> x= 3

15 tháng 7 2017

a) (4x+\(\frac{2}{3}\)) . ( \(\frac{2}{3}\)x-1)=0

\(\Rightarrow\)\(\orbr{\begin{cases}4x+\frac{2}{3}=0\\\frac{2}{3}x-1=0\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\\x=\end{cases}}\)........

Tới đây bn tự giải nha

15 tháng 7 2018

a) \(\left|x+3\right|:\left(-15\right)=\frac{1}{3}\)

\(\left|x+3\right|=-5\)

=> không tìm được x

b) \(\left|4,5-2x\right|.\left(-1\frac{4}{7}\right)=-\frac{11}{14}\)

\(\left|4,5-2x\right|=2\)

TH1: 4,5 - 2x = 2

2x = 2,5

x = 1,25

TH2: 4,5 - 2x = -2

2x = 6,5

x = 3,25

KL:...