Từ 1 điểm S ở ngoài đường tròn (O) kẻ 2 tiếp tuyến SB, SC ( B, C là tiếp điểm ). Vẽ tia Sx nằm giữa SO và SC cắt đường tròn (O) tại E, F ( E nằm giữa S và F) a) Chứng minh: SC2 = SE.SF b) Gọi I là trung điểm dây EF. Chứng minh tứ giác BCIO nội tiếp trong đường tròn. c) Qua B kẻ dây BA // EF. Chứng minh : A, I, C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔSCE và ΔSFC có
góc SCE=góc SFC
góc CSE chung
=>ΔSCE đồng dạng với ΔSFC
=>SC^2=SE*SF
a.
Ta có \(\widehat{SAD}=\widehat{ACE}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung AE)
Lại có \(\widehat{ADB}\) là góc có đỉnh nằm trong đường tròn
\(\Rightarrow\widehat{ADB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}\right)=\widehat{ACB}+\widehat{CAE}\)
Mà \(\widehat{ACB}=\widehat{SAB}\) (cùng chắn cung AB) và \(\widehat{CAE}=\widehat{BAE}\) (do AE là phân giác \(\widehat{BAC}\))
\(\Rightarrow\widehat{ADB}=\widehat{SAB}+\widehat{BAE}=\widehat{SAD}\Rightarrow\Delta SAD\) cân tại S
\(\Rightarrow SA=SD\)
b.
Xét hai tam giác SAB và SCA có:
\(\left\{{}\begin{matrix}\widehat{ASB}\text{ chung}\\\widehat{SAB}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta SAB\sim\Delta SCA\left(g.g\right)\)
\(\Rightarrow\dfrac{SA}{SC}=\dfrac{SB}{SA}\Rightarrow SA^2=SB.SC\)
Theo câu a ta có \(SA=SD\)
\(\Rightarrow SD^2=SB.SC\)
Bài 1 :
a.Ta có MC là tiếp tuyến của (O)
\(\Rightarrow MC\perp OC\)
Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp
b.Vì MC là tiếp tuyến của (O)
\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)
\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)
c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)
\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)
\(\Rightarrow\Delta DCN\) cân
d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)
\(\Rightarrow BKFD\) nội tiếp
\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)
\(+\widehat{FCD}=\widehat{FCE}\)
Vì MC là tiếp tuyến của (O)
\(\Rightarrow CEDF\) nội tiếp
a: Xét ΔSCE và ΔSFC có
góc SCE=góc SFC
góc CSE chung
=>ΔSCE đồng dạng với ΔSFC
=>SC^2=SE*SF
b: ΔOEF cân tại O
mà OI là trung tuyến
nên OI vuông góc FE
góc OIS+góc OBS=180 độ
=>OISB nội tiếp