\(\dfrac{125}{5^x}=5\)
tìm x biết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất tỉ lệ thức, ta có: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Rightarrow25.125=5^x\)
\(\Rightarrow5^2.5^3=5^x\)
\(\Rightarrow x=5\)
Vậy x = 5
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
\(\rightarrow\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\left(\dfrac{-4}{5}\right)^3\)
\(\rightarrow\dfrac{3}{5}-\dfrac{2}{3}x=\dfrac{-4}{5}\)
\(\rightarrow x=\dfrac{21}{10}\)
cho mk sửa lại
tacó:
\(\dfrac{-64}{125}=\left(\dfrac{-4}{5}\right)^3\)
suy ra\(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-4}{5}\)
\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-4}{5}\)
\(\dfrac{3}{5}x=\dfrac{22}{15}\)
\(x=\dfrac{22}{15}:\dfrac{3}{5}\)
\(x=\dfrac{22}{9}\)
ta có:
\(\dfrac{-64}{125}=\left(\dfrac{-16}{5}\right)^3\)
suy ra \(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-16}{5}\)
\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-16}{5}\)
\(\dfrac{3}{5}x=\dfrac{58}{15}\)
\(x=\dfrac{58}{15}:\dfrac{3}{5}\)
\(x=\dfrac{58}{9}\)
\(\dfrac{5^{x+1}}{125}=\dfrac{1}{25^{x-2}}\\ \dfrac{5^{x+1}}{125}=\dfrac{1}{5^{2x-4}}\\ 5^{x+1}\cdot5^{2x-4}=125\\ 5^{x+1+2x-4}=5^3\\ 5^{\left(x+2x\right)+\left(1-4\right)}=5^3\\ 5^{3x-3}=5^3\\ 3x-3=3\\ 3x=6\\ x=2\)
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)
=>5^x=25
=>x=2
`125/5^x=5`
`-> 125/5^x=5/1`
`-> 5*5^x=125`
`->`\(5^{1+x}=125\)
`->`\(5^{1+x}=5^3\)
`->`\(x+1=3\)
`-> x=3-1`
`-> x=2`
Vậy, `5^x=5^2`.