Vật AB đặt vuông góc trước một thấu kính hội tụ, điểm A nằm trên trục chính, cho ảnh A'B' qua thấu kính có kích thước lớn gấp 2 lần vật và cùng chiều với vật. Biết ảnh cách vật 10cm. Tính tiêu cự của thấu kính?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Dựng ảnh A'B'
b) d > f , ảnh lớn hơn và ngược chiều với vật
c)
Tóm tắt:
OF = 12cm
OA = 18cm
AB = 6cm
A'B' = ?
Giải:
Δ ABF ~ OIF
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{6}{A'B'}=\dfrac{18-12}{12}\)
=> A'B' = 12cm
Đáp án: B
Giữa độ bội giác và tiêu cự f (đo bằng cm) có hệ thức:
Đáp án: A
Ảnh cao gấp 4 lần vật nên khoảng cách từ ảnh đến thấu kính gấp 4 lần khoảng cách từ vật đến thấu kính
=> d' = 40 cm
Vì ảnh là ảnh ảo.
Áp dụng công thức thấu kính hội tụ với ảnh ảo ta có:
a)
+ Vật AB cách thấu kính một khoảng d = 30 cm
Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Rightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{15h'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)
\(\Rightarrow h'=1\left(cm\right)\)
Vậy ảnh cao 1(cm)
Khoảng cách từ ảnh đến thấu kính:
\(d'=15h'=15.1=15\left(cm\right)\)
a)
+ Vật AB cách thấu kính một khoảng d = 30 cm
Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Leftrightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)
\(\Rightarrow h'=1\left(cm\right)\)
Vậy chiều cao của ảnh là 1(cm)
Khoảng cách từ ảnh đến thấu kính:
\(d'=15h'=15.1=15\left(cm\right)\)
Ảnh `A'B'` lớn gấp `2` lần vật và cùng chiều vật
`=>k=-2=-[d']/d=>d'=2d`
Mà `L=-(d+d')=10`
`=>10=-(d+2d)<=>d=-10/3(cm)=>d'=-20/3(cm)`
`=>f=[d.d']/[d+d']=[-10/3 . (-20/3)]/[-10/3-20/3]=-20/9(cm)`