Cho tam giác ABC cân taih A,đường trung tuyến BM và CN cắt nhau tại D ( M thuộc AC,N thuộc AB ).
1) Chứng minh tam giác ANC = tam giác AMB.
2)Chứng minh tam giác BDC cân.
3)Qua B,C lần lượt kẻ các đường thẳng vuông góc với AB và AC,chúng cắt nhau taih E.Chứng minh 3 điểm A,D,E thẳng hàng.
a. Do ABC là tam giác cân tại A nên AB = AC hay AN = NB = CM = MA.
Xét tam giác AMB và ANC có:
AM = AN; AB = AC; góc A chung nên \(\Delta AMB=\Delta ANC\left(c-g-c\right)\)
b. Từ câu a, \(\widehat{ABM}=\widehat{ACN}\) (Hai góc tương ứng)
Mà tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Suy ra \(\widehat{DBC}=\widehat{DCB}\) hay tam giác BDC cân tại D.
c. Ta thấy \(\Delta ABE\) và \(\Delta ACE\) có : \(\widehat{B}=\widehat{C}=90^o;\) AB = AB; AE chung
nên \(\Delta ABE\)= \(\Delta ACE\left(ch-cgv\right)\Rightarrow EB=EC\)
Ta thấy AB = AC, DB = DC, EB = EC nên A, D, E cùng thuộc đường trung trực của BC. Vậy chúng thẳng hàng.