K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHKB vuông tại K và ΔHDC vuông tại D có

góc KHB=góc DHC

=>ΔKHB đồng dạng với ΔDHC

Xet ΔCDB vuông tại D và ΔCEA vuông tại E có

góc C chung

=>ΔCDB đồng dạng với ΔCEA

=>CD/CE=CB/CA

=>CD*CA=CE*CB

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc SBK=góc SDC

1: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{A}\) chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)

2: Xét ΔADE và ΔABC có 

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó:ΔADE∼ΔABC

7 tháng 5 2015

ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015

3. Từ ID.IE=IM2-MC= ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).

4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2

Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 15= 225.

7 tháng 5 2016

giải câu 1 với câu 2 giùm em với

loading...  loading...  

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔACE(g-g)

b) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot HD=CH\cdot HE\)(đpcm)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔHEA\(\sim\)ΔHDB(g-g)

23 tháng 3 2021

giúp mik câu c với

 

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)