Cho Tam giác ABC vuông tại A ( AB < AC ). Kẻ tia phân giác của ABC cắt BC tại D. Kẻ DM vuông góc với BC tại M.
a) Chứng minh Tam giác DAB = tam giác DMB.
b) Chứng minh BD vuông góc với AM
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB . Chứng minh AM // KC
a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:
\(DB\) chung
\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)
b) Do ∆DAB = ∆DMB (cmt)
⇒ DA = DM (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AM (1)
Do ∆DAB = ∆DMB (cmt)
⇒ BA = BM (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AM (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AM
Hay BD ⊥ AM
c) Xét hai tam giác vuông:
∆DMC và ∆DAK có:
DM = DA (cmt)
∠MDC = ∠ADK (đối đỉnh)
∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)
⇒ MC = AK (hai cạnh tương ứng)
Lại có: BM = BA (cmt)
⇒ BM + MC = BA + AK
⇒ BC = BK
∆BCK cân tại B
Mà BD là tia phân giác của ∠B
⇒ BD cũng là đường cao của ∆BCK
⇒ BD ⊥ KC
Mà BD ⊥ AM (cmt)
⇒ AM // KC