K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2023

S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))

S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)

Vì em lớp 6 nên phải làm thêm bước này nữa:

Ta có

n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)

Áp dụng công thức vừa chứng minh trên vào tổng S ta có:

S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)

S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)

S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)

S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)

S = \(\dfrac{51}{100}\)

4 tháng 5 2023

Em cảm ơn cô ạ1

 

19 tháng 4 2017

Đặt A=1/10+1/40+1/88+1/154+1/238+1/340

A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20

3A=3/2.5+3/5.8+....+3/17.20

3A=1/2-1/5+1/5-1/8+...+1/17-1/20

3A=1/2-1/20

3A=9/20

2)

Giữ nguyên p/s 1/2^2

Ta có:1/3^2<1/2.3

         1/4^2<1/3.4

        ...............

          1/n^2<1/(n-1).n

=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n

=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n

=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n

=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4

3)

2B=2/3.5+2/5.7+....+2/47.49+2/49.51

2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51

2B=1/3-1/51

2B=16/51

B=16/51:2

B=8/51

19 tháng 4 2017

A=1+1/2+1/2^2+...+1/2^2010

2A=2+1+1/2+....+1/2^2009

2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)

A=2-1/2^2010

25 tháng 12 2020

ko có biết

21 tháng 8 2019

mng giúp em với tối em nộp bài rồi a

19 tháng 7 2021

cức + điên= lan ngọc cức điên

21 tháng 8 2019

Đề bài bn ghi thek thì ai làm nổi cho bn :V ?

12 tháng 2 2020

3A= 1+ \(\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^7\)

2A= 1 - \(\left(\frac{1}{3}\right)^8\)

A= \(\frac{1-\left(\frac{1}{3}\right)^8}{2}\)

Vậy....