chứng minh rằng
\(\frac{a}{n\left(n+a\right)}\)=\(\frac{1}{n}\)-\(\frac{1}{n+a}\)
áp dụng tính
A=\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{99.100}\)
B=\(\frac{5}{1.4}\)+\(\frac{5}{4.7}\)+....+\(\frac{5}{100.103}\)
C=\(\frac{1}{15}\)+\(\frac{1}{35}\)+.....+\(\frac{1}{2499}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)
\(B=\frac{510}{103}\)