cho tam giác ABC cân tại A.Kẻ trung tuyến AM.a/ chứng minh AM là đương phân giác của tam giác ABC.b/tính AM biết AB=13cm và BC=10cm.c/qua M vẽ MN//AC(N thuộc AC).chứng minh:MN là đường trung tuyến của tam giác AMB.d/nối CN cắt AM tại G. chứng minh AM+CN>3/2AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:BM=CM===5(cm)
Vì AM là trung tuyến
=>AM là đường cao
Xét ΔABM vuông tại M có:
AB2=AM2+MB2(định lý pytago)
Hay:132=AM2+52
169=AM2+25
AM2=
AM=12(cm)
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=2323MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=2323MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng
#\(N\)
`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC, `\(\widehat{B}=\widehat{C}\)
`AM` là đường trung tuyến Tam giác `ABC -> BM = MC`
Xét Tam giác `ABM` và Tam giác `ACM` có:
`AB = AC`
\(\widehat{B}=\widehat{C}\)
`BM = MC`
`->` Tam giác `ABM =` Tam giác `ACM (c-g-c)`
`->`\(\widehat{BAM}=\widehat{CAM}\) `(2` góc tương ứng `)`
`-> AM` là phân giác của \(\widehat{BAC}\)
Xét tam giác \(\Delta ABM\) và \(\Delta ACM\)
\(AB=AC\left(gt\right)\)
\(\widehat{ABM}=\widehat{ACM}\left(gt\right)\)
\(AM\) chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Từ tam giác bằng nhau trên suy ra:
\(\widehat{BAM}=\widehat{CAM}\) nên \(AM\) là phân giác \(\widehat{BAC}\)
Là phân giác của \(\Delta ABC\)
Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!