Câu 1: Tìm nghiệm của đa thức
A(x)=x2 -x
Câu 2: cho tam giác ABC cân tại A trung tuyến AM và đường cao BE. Trên đoạn AB lấy điểm F sao cho BF=EC, CF và BE cắt nhau tại điểm I
a) CM Tam giác FBC = tam giác ECB
b) CM điểm A I M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC(cmt)
\(\widehat{EBC}=\widehat{FCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔEBC=ΔFCB(c-g-c)
Suy ra: EC=FB(hai cạnh tương ứng)
b) Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(ΔEBC=ΔFCB)
nên ΔDBC cân tại D(Định nghĩa tam giác cân)
d) Lấy điểm O thuộc IC sao cho tam giác IOE đềo => IEF = OFC (cgc)
=> EF = FC
c) Lấy điểm O thuộc IC sao cho tam giác IOE đều => ∆IEF = ∆OEC (cgc)
=> EF = EC
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
a) Xét tam giác BFC và CEB ta có:
Góc FBC = góc ECB
BF = CE
BC cạnh chung
=> tam giác BFC = tam giác CEB (c-g-c)
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Xét ΔBAC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
lớp m z