Tam giác ABC vuông tại A, có góc B=60 độ. Tia phân giác của góc B cắt AC ở D. Từ D kẻ DE vuông góc với BC tại E
a) chứng minh rằng: BA=BE
b) tính số đo góc EDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE
b: góc ADE=180-60=120 độ
=>góc EDC=60 độ
a: \(\widehat{C}=90^0-60^0=30^0\)
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥CB
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a: góc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC và AK=HC
mà BA=BH
nên BK=BC
mà EK=EC
nên BE là trung trực của KC
=>BE vuong góc KC
a) Xét hai tam giác vuông: ∆ABD và ∆EBD có:
∠ABD = ∠EBD (BD là phân giác của B)
BD chung
⇒ ∆ABD = ∆EBD (cạnh huyền - góc nhọn)
⇒ BA = BE (hai cạnh tương ứng)
b) Do ∆ABC vuông tại A
⇒ ∠B + ∠C = 90⁰
⇒ ∠C = 90⁰ - ∠B
= 90⁰ - 60⁰
= 30⁰
∆DEC vuông tại E có
∠C = 30⁰
∠EDC + ∠C = 90⁰
⇒ ∠EDC = 90⁰ - ∠C
= 90⁰ - 30⁰
= 60⁰
Em cám ơn chị