Cần gấp bài 7 ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 7 :
a, Tham khảo : https://olm.vn/hoi-dap/detail/43902845942.html
b, Tham khảo : https://olm.vn/hoi-dap/detail/7963533510.html
Bài 6:
a: \(\sqrt{\dfrac{2}{3-\sqrt{5}}}=\dfrac{\sqrt[4]{2}\cdot\left(\sqrt[2]{5}+1\right)}{2}\)
b: \(\sqrt{\dfrac{a-4}{2\left(\sqrt{a}-2\right)}}=\dfrac{\sqrt{2}\left(\sqrt{a}+2\right)}{2}\)
Bài 8:
a) Ta có: AD+DB=AB(D nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà DB=EC(gt)
và AB=AC(ΔABC cân tại A)
nên AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AD=AE;AB=AC\right)\)
Do đó: DE//BC(Định lí Ta lét đảo)
c) Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)
Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Bài 7:
a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có
AD=BC(ABCD là hình thang cân)
\(\widehat{B}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)
Suy ra: DE=CF(Hai cạnh tương ứng)
\(\Leftrightarrow DE+EF=CF+FE\)
\(\Leftrightarrow DF=CE\)
b) Xét tứ giác ABFE có
AE//BF(gt)
AE=BF(ΔAED=ΔBFC)
Do đó: ABFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB=EF(Hai cạnh đối)
Bài 7:
a: \(A=x+\sqrt{x}\ge0\forall x\)
Dấu '=' xảy ra khi x=0
-5/7 . 2/11 + (-5/7) . 9/11 + 5/7
= -5/7 . 2/11 + -5/7 . 9/11 + (-5/7) . (-1)
= (-5/7) . (2/11 + 9/11 -1)
= (-5/7) . 0
=0
ks nha bạn
\(-2\left(2x-7\right)^2=2\)
\(\Rightarrow\left(2x-7\right)^2=-4\)
Mà: \(\left(2x-7\right)^2\ge0\)
=> Ko có giá trị x cần tìm
a: A(x)=0
=>2x-1=0
=>x=1/2
b: B(x)=0
=>(4x-3)(x+5)=0
=>x=3/4 hoặc x=-5
c: P(x)=0
=>3-x^2=0
=>x^2=3
=>\(x=\pm\sqrt{3}\)
d: M(x)=0
=>9-4x^2=0
=>4x^2=9
=>x=3/2 hoặc x=-3/2
e: N(a)=0
=>2a^2-3a=0
=>a=0; a=3/2