Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE
a: Xét ΔBAH và ΔBDH có
BA=BD
AH=DH
BH chung
=>ΔBAH=ΔBDH
b: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>DA=DE