Người ta thả một miếng thép có khối lượng 0,4kg ở nhiệt độ 120C vào 1,5 kg nước. Nhiệt độ khi có sự cân bằng là 35°C. Hỏi nước nóng lên thêm bao nhiêu độ và nhiệt độ ban dầu của nước là bao nhiêu? (Bỏ qua sự trao đổi nhiệt của bình nước và môi trường).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt
\(m_1=700g=0,7kg\)
\(t_1=105^0C\)
\(m_2=2,8kg\)
\(t=33^0C\)
\(\Rightarrow\Delta t_1=t_1-t=105-33=72^0C\)
\(c_1=460J/kg.K\)
\(c_2=4200J/kg.K\)
_______________
\(\Delta t_2=?^0C\)
Giải
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\ \Leftrightarrow0,7.460.72=2,8.4200.\Delta t_2\Leftrightarrow\Delta t_2=1,97^0C\)
Tóm tắt:
\(m_1=700g=0,7kg\)
\(t_1=105^oC\)
\(m_2=2,8kg\)
\(t=33^oC\)
\(\Rightarrow\Delta t_1=t_1-t=72^oC\)
\(c_1=460J/kg.K\)
\(c_2=4200J/kg.K\)
==========
\(\Delta t_2=?^oC\)
Nhiệt độ nước nóng lên:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\)
\(\Leftrightarrow\Delta t_2=\dfrac{m_1.c_1.\Delta t_1}{m_2.c_2}\)
\(\Leftrightarrow\Delta t_2=\dfrac{0,7.460.72}{2,8.4200}\)
\(\Leftrightarrow\Delta t_2\approx2^oC\)
Nhiệt độ của nước sau khi tăng lên:
\(\Delta t=t-t_2\Leftrightarrow t_2=\Delta t-t=2+33=35^oC\)
Nhiệt lượng đồng toả ra
\(Q_{toả}=5.380\left(100-30\right)=133000J\)
Ta có phương trình cân bằng nhiệt
\(Q_{thu}=Q_{toả}=133000J\)
Nước nóng thêm số độ là
\(\Delta t^o=\dfrac{Q_{thu}}{m_1c_1}=\dfrac{133000}{3,5.42002}=9^o\)
Tóm tắt:
\(m_1=600g=0,6kg\)
\(m_2=2,1kg\)
\(t=380^oC\)
\(t_1=5700^oC\)
\(\Rightarrow\Delta t_1=t_1-t=5700-380=5320^oC\)
\(c_1=380J/kg.K\)
\(c_2=4200J/kg.K\)
===========
\(\Delta t_2=?^oC\)
Vì nhiệt lượng của đồng tỏa ra bằng với nhiệt lượng của nước thu vào:
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\)
\(\Leftrightarrow0,6.380.5320=2,1.4200.\Delta t_2\)
\(\Leftrightarrow1212960=8820\Delta t_2\)
\(\Leftrightarrow\Delta t_2=\dfrac{1212960}{8820}\approx138^oC\)
ta có PT cân bằng nhiệt
\(Q_{thu}=Q_{tỏa}\)
\(\Leftrightarrow m_1.c_1.\left(t_1-t\right)=m_2.c_2.\left(t-t_2\right)\)
\(\Leftrightarrow0,6.380.\left(100-t\right)=2,5.4200.\left(t-30\right)\)
\(\Leftrightarrow\text{22800+315000}=\text{10500t+228}t\)
\(\Leftrightarrow\text{10728t=337800}\)
\(\Leftrightarrow t=31,5^0C\)
nước nóng lên
\(31,5-30=1,5^0C\)
Tóm tắt
\(m_1=500g=0,5kg\\ t_1=100^0C\\ m_2=3kg\\ t=35^0C\\ \Rightarrow\Delta t_1=t_1-t=100-35=65^0C\\ c_1=380J/kg.K\\ c_2=4200J/kg.K\)
________________
\(\Delta t_2=?^0C\)
Giải
Nhiệt độ nước nóng thêm là:
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\\Leftrightarrow0,5.380.65=3.4200. \Delta t_2\\ \Leftrightarrow12350=12600\Delta t_2\\ \Delta t_2=1^0C\)
Tóm tắt: Giải
m1= 500g=0,5kg Nhiệt lượng miếng đồng toả ra là:
m2= 3kg Q1= 0,5.(100-35).380 = 12 350 (J)
t1=100°C Áp dụng phương trình cân bằng nhiệt ta có:
t=35°C Q1 = Q2 = 3. △2.4200 = 12 350 (J)
c1= 380J/kg.K => △t = \(\dfrac{12350}{3.4200}\) =1,47 (°C)
c2= 4200J/kg.K Vậy miếng đồng tăng lên 1,47°C
____________
△t = ? (°C)
Gọi nhiệt độ nước ban đầu là \(t_2^oC\).
Nhiệt lượng miếng đồng tỏa ra:
\(Q_{toả}=m_1c_1\left(t_1-t\right)=0,6\cdot380\cdot\left(100-30\right)=15960J\)
Nhiệt lượng nước thu vào:
\(Q_{thu}=m_2c_2\left(t-t_2\right)=2,5\cdot4200\cdot\left(30-t_2\right)J\)
Cân bằng nhiệt: \(Q_{tỏa}=Q_{thu}\)
\(\Rightarrow15960=2,5\cdot4200\cdot\left(30-t_2\right)\Rightarrow t_2=28,48^oC\)
Nước nóng thêm \(\Delta t_2=30-28,48=1,52^oC\)
Nhiệt lượng đồng tỏa ra là:
Q1 = m1.c1.(t1 – t) = 380.0,6.(100 – 30)
Nhiệt lượng nước thu vào là:
Q2 = m2.c2.(t – t2) = 2,5.4200.(t – t2)
Vì nhiệt lượng tỏa ra bằng nhiệt lượng thu vào nên:
Qthu = Qtỏa ↔ Q2 = Q1
↔ 380.0,6.(100 – 30) = 2,5.4200.(t – t2)
Suy ra Δt = t – t2 = 1, 52oC
Tóm tắt
\(m_1=0,4kg\\ t_1=120^0C\\ m_2=1,5kg\\ t=35^0C\\ c_1=460J/kg.K\\ c_2=4200J/kg.K\Rightarrow\Delta t_1=t_1-t=120-35=85^0C\)
____________
\(\Delta t_2=?^0C\\ t_2=?^0C\)
Giải
Nhiệt độ nước tăng thêm là:
Theo phương trình cân bằng nhiệt:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\ \Leftrightarrow0,4.460.85=1,5.4200.\Delta t_2\\ \Leftrightarrow15640=6300\Delta t_2\\ \Leftrightarrow\Delta t_2\approx2,5^0C\)
Nhiệt độ ban đầu của nước là:
\(\Delta t_2=t-t_2\Rightarrow t_2=t-\Delta t=35-2,5=32,5^0C\)