so sánh
A=30152016-2/30152017-2 và B=30152015-2/30152016-2
nhanh lên giúp mình với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{4^2}< \dfrac{1}{3\cdot4};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
\(\Rightarrow M< \dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-1-\dfrac{1}{2}-...-\dfrac{1}{50}\\ =\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\left(50.số\right)=\dfrac{50}{50}=1\)
Vậy \(M< 1\)
Mình chỉ so sánh với 1 được thôi à :((
Ta có \(\frac{a+1}{a+2}=1-\frac{1}{a+2}\)
\(\frac{a+2}{a+3}=1-\frac{1}{a+3}\)
Vì \(\frac{1}{a+2}>\frac{1}{a+3}\)
\(\Rightarrow\frac{a+1}{a+2}< \frac{a+2}{a+3}\)
Ta có: \(\left(a-b\right)\left(a+b\right)\)
\(=a^2+ab-ab-b^2\)
\(=a^2-b^2\)
\(\left(a-b\right)\cdot\left(a+b\right)\)
\(=a\cdot a+a\cdot b-b\cdot a-b\cdot b\)
\(=a^2+ab-ab+b^2\)
\(=a^2-b^2\)
Vậy \(a^2-b^2=\left(a-b\right)\cdot\left(a+b\right)\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2009.2010.2011}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2009.2010}-\frac{1}{2010.2011}\)
\(=\frac{1}{2}-\frac{1}{2010.2011}< \frac{1}{2}\)
Vậy...
A, 1920và 98.516
98.516=98.58.58=2258=6568408355712890625
1920=37589973457546000000000000
=> 1920>98.516
B, 1340và 2161