Bài 1: Cho tam giác DEF cân tại D. Trên cạnh DE và DF lần lượt lấy hai điểm H và K sao cho DH =DK. Gọi giao điểm của EK và FH là O. Chứng minh rằng
a) EK = FH
b) DHOE = DKOF
c) DO vuông góc với EF
Bài 2: Cho tam giác nhọn ABC có AB < AC , đường cao AD. Trên đoạn DC lấy điểm E sao
cho DB = DE
a) Chứng minh tam giác ABE cân;
b) Từ E kẻ EF vuông góc với AC (F thuộc AC). Từ C kẻ CK vuông góc với AE (K thuộc AE). Chứng minh rằng ba đường thẳng AD, EF, và CK đồng quy tại một điểm.
Bài 3: Cho tam giác đều DEF. Tia phân giác của góc E cắt cạnh DF tại M. Qua D kẻ đường thẳng vuông góc với DE, đường thẳng này cắt tia EM tại N và cắt tia EF tại P. Chứng minh rằng
a) DDNF cân
b) NF vuông góc với EF
c) DDEP cân
Bài 4: Cho tam giác DEF cân tại D. Gọi M, N lần lượt là trung điểm của DF và DE. Kẻ DH vuông góc với EF
a) Chứng minh EM = FN và DEM = DFN