( Đề thi HK II năm học 2018_2019) Cho tam giác nhọn ABC (AB < AC), đường cao AH. a) Vẽ HD song song AC (D thuộc AB). Giả sử BD = 4 cm, BH = AD = 6 cm. Tính HC. b) Kẻ HE vuông góc với AC tại E. Chứng minh: AHE ∽ ACH, suy ra AH2 = AE.AC. c) Kẻ HF vuông góc với AB tại F. Chứng minh AEF = ABC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KT
10 tháng 7 2018
hình tự vẽ nhé:
\(BC=BH+HC=16+81=97\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=16.97=1552\)
\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)
\(AC^2=HC.BC\)
\(\Rightarrow\)\(AC^2=81.97=7857\)
\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)
\(AH.BC=AB.AC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)
\(AD.AB=AH^2\)
\(AE.AC=AH^2\)
suy ra: \(AD.AB=AE.AC\)
a: DH//AC
=>BH/HC=BD/DA
=>6/HC=4/6=2/3
=>HC=9cm
b: Xét ΔAHE vuông tại E và ΔACH vuông tại H có
góc HAE chung
=>ΔAHE đồng dạng với ΔACH
=>AH^2=AE*AC
c: ΔAHB vuông tại H có HF vuông góc AB
nên AF*AB=AH^2=AE*AC
=>AF/AC=AE/AB
=>ΔAFE đồng dạng vơi ΔACB
=>góc AEF=góc ABC