K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Hơi nhầm nè , để tôi sửa lại đề \(A=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\)

\(A=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{9900}\right)\)

\(A=1+1+1+...+1-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-....-\frac{1}{9900}\)

\(A=98-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\right)\)

\(A=98-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(A=98-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=98-\left(\frac{1}{2}-\frac{1}{100}\right)=98-\frac{49}{100}=\frac{9751}{100}\)

Vậy.............

3 tháng 5 2017

 \(A=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9989}{9900}\)

\(A=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{9900}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

               có 50 số 1

\(A=50-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

Đặt B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

Thay B vào A ta được:

\(A=50-\frac{49}{100}=\frac{5000}{100}-\frac{49}{100}=\frac{4951}{100}\)

25 tháng 4 2018

Ta có : 

\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)

\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)

\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)

\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)

\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)

Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra : 

\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{A}{100}=98-\frac{49}{100}\)

\(\frac{A}{100}=\frac{9751}{100}\)

\(A=\frac{9751}{100}.100\)

\(A=9751\)

Vậy \(A=9751\)

Chúc bạn học tốt ~ 

2 tháng 9 2020

Mấy câu như này tách ra kiểu gì?

2 tháng 9 2020

\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)

\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)

28 tháng 5 2018

A = 5 x (\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\))

A = 5 x ( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\))

A = 5x( \(\frac{1}{2}-\frac{1}{100}\))

A = \(\frac{49}{20}\)

28 tháng 5 2018

Gọi tổng trên là A

\(\Leftrightarrow A=5\times\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)

(Tính dãy trong ngoặc) Gọi dãy trong ngoặc là B

\(\Leftrightarrow2B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)

\(\Leftrightarrow2B-B=\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)

\(\Leftrightarrow B=\frac{1}{3}-\frac{1}{9900}+0+...+0\)

\(\Leftrightarrow B=\frac{3299}{9900}\)

\(\Rightarrow A=5\times\frac{3299}{9900}\)

\(\Rightarrow A=1,6661616...\approx1,7\)

28 tháng 7 2017

tự làm

=1/1.2+5/2.3+11/3.4+19/4.5+29/5.6+41/6.7

=1-1/2+5/2-5/3+11/3-11/4+19/4-19/5+29/5-29/6+41/6-41/7

=3+2+2+2+2-41/7

=77/7-41/7

=36/7

k nhé

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)

\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(=6-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\right)\)

\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=6-\left(1-\frac{1}{7}\right)=6-\frac{6}{7}=\frac{36}{7}\)

8 tháng 2 2016

A= 5.(1/2 + 1/6+1/12+1/20+...+1/9506+1/9702+1/9900)

 = 5. (1/1.2 + 1/2.3+1/3.4+1/4.5+...1/97.98+1/98.99+1/99.100)

= 5 .(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/97-1/98+1/98-1/99+1/99-1/100)

= 5.(1-1/100)=5. 99/100=99/20

8 tháng 2 2016

25

5144 nhe