K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

a, HS tự chứng minh

b, M chính giữa  A B ⏜

=> NE là phân giác  B N A ^

=>  B N A N = E B E A  (tính chất đường phân giác) => BN.AE = NA.BE

c, HS tự chứng minh

d, Chứng minh ∆ABN:∆DBN => ĐPCM

22 tháng 2 2021

a) ta có : 

P là điểm chính giữa cung AC

=> cung AP = cung PC

N là điểm chính giữa cung BC

=> cung NB = NC

Mà : góc IBN = 1/2 cung PN = 1/2 (cung PC + cung CN )

        góc BIN = 1/2 ( cung BN + AP ) 

mà cung PC = cung AP 

      cung BN = cung CN

=> IBN = BIN

=> tam giác IBN là tam giác cân 

b) ta có : N là điểm chính giữa của cung BC 

=>MN là tia phân giác của góc BAC

=> EB/AE=BN/AN

=> đpcm

c) ta có : BNI cân 

NM là tia phân giác 

=> NM cũng là tia trung trực 

=> EBN = EIN 

MÀ IBN = BIN ( tam giác cân ) 

=> EBI=EIB (1) 

=> tam giác EBI cân 

mà P là điểm chính giữa cung AC

=> BP là đường phân giác của góc EBN

=> EBP = IBN hay EBI=IBN (2) 

từ (1) và (2) => IBN=EIB

mà 2 góc ở vị trí slt => EI//BC

d) Xét tam giác BAN và tam giác BDN

có N chung 

   góc BAN = BDN ( cùng chắn cung BN )

=> tam giác BAN đồng dạng tam giác BDN 

=> đpcm

 

22 tháng 2 2021

a, CM BIN=IBN = 1/2 sđ PN => tam giác BIN cân tại N 

b, CM đc MN vuông góc với BP mà tam giác BIN cân tại N => MN là đường trung trực của BI , E thuộc MN => BE=BI và EN là tia pg của BEI  

CM tam giác AEN ~ tam giác IEN ( g-g) =>AE.IN = EI.AN => AE.BN = EB.AN

c, CM đc EBP = PBC mà EBI =EIB nên EIB = IBD mà 2 góc này ở vị trí slt=> EI //BC

d, CM tam giác ABN~ tam giác BDN ( g-g) => AN/BN = AB /BD \dfrac{AN}{BN}=\dfrac{AB}{BD}

1: AB=AC

NB=NC

=>AN là trung trực của BC

mà O nằm trên trung trực của BC

nên A,N,O thẳng hàng

=>AN là đường kính của (O)

=>góc ABN=90 độ

2: góc BIN=1/2(sđ cung BN+sđ cung AP)

=1/2(sđ cungCN+sđ cung CP)

=1/2*sđ cung PN

=góc IBN

=>ΔIBN cân tại N

23 tháng 8 2018

3) Chứng minh tứ giác BHIK là hình thoi.

Ta có  A B C ^ = A N C ^  (góc nội tiếp cùng chắn cung A C ⏜ )

A M C ^ = A H I ^ (góc nội tiếp cùng chắn cung I C ⏜ )

⇒ A B C ^ = I K C ^  Mà 2 góc này ở vị trí đồng vị nên  H B / / I K  (1)

+ Chứng minh tương tự phần 1 ta có tứ giác AMHI nội tiếp

A N C ^ = I K C ^  (góc nội tiếp cùng chắn cung  A I ⏜ )

Ta có  A B C ^ = A M C ^  (góc nội tiếp cùng chắn cung  A C ⏜ )

⇒ A B C ^ = A H I ^  Mà 2 góc này ở vị trí đồng vị nên  B K / / H I  (2)

Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.

Mặt khác AN, CM  lần lượt là các tia phân giác của các góc A và C  trong tam giác ABC nên I là giao điêm 3 đường phân giác, do đó BI là tia phân giác góc B

Vậy tứ giác BHIK là hình thoi (dấu hiệu nhận biết hình thoi).

 

5 tháng 5 2018

c. 

Tứ giác IKNC là tứ giác nội tiếp (cmt)=> \(\widehat{IKC}=\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{IC}\))

Xét đt(O) có: \(\widehat{ABC}=\widehat{ANC=}\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{NC}\))

=> \(\widehat{ABC}=\widehat{IKC}\)mà 2 góc này ở vị trí đồng vị => IK // HB (dhnb)

Chứng minh tương tự câu a ta có: Tứ giác AMHI là tứ giác nội tiếp => \(\widehat{AHI}=\widehat{AMI}=\widehat{AMC}\)(cùng = \(\frac{1}{2}sđ\widebat{AI}\))

Xét đt(O) có: \(\widehat{ABC}=\widehat{AMC}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)=> \(\widehat{ABC}=\widehat{AHI}\)mà 2 góc này ở vị trí đồng vị => HI // BK

Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{BM}\)

Xét đt(O) có: \(\widehat{ACM}=\frac{1}{2}sđ\widebat{AM}\)và \(\widehat{BCM}=\frac{1}{2}sđ\widebat{BM}\)=> \(\widehat{ACM}=\widehat{BCM}\)=> CM là tia phân giác của \(\widehat{ACB}\)

CMTT ta có: AN là tia phân giác của \(\widehat{BAC}\)

Mà 2 dây AN và CM cắt nhau tại I (gt) => BI là tia phân giác của \(\widehat{ABC}\)hay BI là tia phân giác của \(\widehat{HBK}\)

Xét tứ giác BHIK có:

* HI // BK (cmt)

* IK // HB (cmt)

=> tứ giác BHIK là hình bình hành (DHNB)

Mà BI là phân giác của \(\widehat{HBK}\)(cmt) => tứ giác BHIK là hình thoi (dhnb hình thoi)

d. Vì \(\widehat{NBK}=\widehat{BMN}=\widehat{BMK}\left(cmt\right)\)=> BN là tiếp tuyến tại B của đt (P) ngoại tiếp \(\Delta MBK\)=> \(BN\perp BP\)Mà \(BN\perp BD\)do \(\widehat{DBN}=90^o\)(góc nội tiếp chắn nửa đt) => B, P , D thẳng hàng

Tương tự ta có: C, Q, D thẳng hàng

\(\Delta BPK\)và \(\Delta DBC\)là 2 tam giác cân có chung góc ở đáy => góc ở đỉnh của chúng bằng nhau => \(\widehat{BPK}=\widehat{BDC}\)Mà 2 góc này ở vị trí đồng vị => PK // DC (dhnb) => PK // DQ

CMTT ta có: DP // QK => DPKQ  là hình bình hành (dhnb HBH) => DK đi qua trung điểm của PQ => D, E, K thẳng hàng (đpcm)

5 tháng 5 2018

a. Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{MB}\)=> \(\widehat{ACM}=\widehat{BCM}\)(2 góc nội tiếp chắn 2 cung = nhau)

Lại có: \(\widehat{ACM}=\widehat{ANM}\)(CÙNG = \(\frac{1}{2}sđ\widebat{AM}\))  => \(\widehat{MNA}=\widehat{BCM}\)hay \(\widehat{KNI}=\widehat{KCI}\)(Do M,K,N và A,I,N => \(\widehat{MNA}=\widehat{KNI}\)M,I,C và B,K,C => \(\widehat{BCM}=\widehat{KCI}\)) => IKNC là tứ giác nội tiếp (Dấu hiệu nhận biết)

b. Xét đường tròn (O) có: \(\widehat{BMN}=\frac{1}{2}sđ\widebat{BN}\)và \(\widehat{NBC}=\widehat{NBK}=\frac{1}{2}sđ\widebat{NC}\)

mà N là điểm chính giữa cung nhỏ \(\widebat{BC}\)(gt) => sđ \(\widebat{BN}\)= sđ \(\widebat{NC}\)=> \(\widehat{BMN}=\widehat{NBK}\)

Xét \(\Delta BMN\)và \(\Delta KBN\)có:

\(\widehat{N}\)chung

\(\widehat{BMN}=\widehat{NBK}\)(cmt)

=> \(\Delta BMN~\Delta KBN\)(g.g) => \(\frac{NB}{NK}=\frac{NM}{NB}\)<=> \(NB^2=NK.NM\)(đpcm)

13 tháng 5 2018

2) Chứng minh  N B 2 = N K . N M .

Ta có N là điểm chính giữa cung  B C ⏜   ⇒ B N ⏜ = C N ⏜   ⇒ B M N ^ = C M N ^   (góc nội tiếp chắn 2 cung bằng nhau)

Mà  C B N ^ = C M N ^ (góc nội tiếp chắn cùng chắn cung  C N ⏜ )

C B N ^ = B M N ^ (cùng bằng góc  C M N ^ ⇒ K B N ^ = B M N ^

Xét  Δ K B N   v à   Δ B M N có:

N ^ chung

K B N ^ = B M N ^

⇒ Δ K B N ∽ Δ B M N ⇒ K N B N = B N M N ⇒ N B 2 = N K . N M

(điều phải chứng minh).

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).