K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Đáp án A

26 tháng 8 2017

Đáp án A

23 tháng 4 2018

Đáp án B

Ta có:   2 B H 2 = a 3 2 ⇒ B H 2 = 3 a 2 2

S H = S B 2 − B H 2 = 2 a 2 − 3 a 2 2 = a 2  

Thể tích khối chóp S.ABCD là:

V = 1 3 . S H . S A B C D = 1 3 . a 2 . a 3 2 = a 3 2

22 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó (SBC) ⊥ (SIK)

b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).

Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK

ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 6 2017

Đáp án B

NV
4 tháng 5 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Từ A kẻ \(AH\perp SO\Rightarrow AH\perp\left(SBD\right)\)

\(\Rightarrow AH=d\left(A;\left(SBD\right)\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)

Hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AO^2}\Rightarrow AH=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{a\sqrt{21}}{7}\)

NV
14 tháng 4 2021

\(\left\{{}\begin{matrix}AO\cap\left(SBC\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SBC\right)\right)=2d\left(O;\left(SBC\right)\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Từ A kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{285}}{19}\)

\(\Rightarrow d\left(O;\left(SBC\right)\right)=\dfrac{1}{2}AH=\dfrac{a\sqrt{285}}{38}\)