K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

a) a1. Chứng minh \(BAOE\) là tứ giác nội tiếp.

Tứ giác \(BAOE:\left\{{}\begin{matrix}\hat{OEB}=90^o\left(\text{tiếp tuyến}\right)\\\hat{OAB}=90^o\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\hat{OEB}+\hat{OAB}=90^o+90^o=180^o\Rightarrow BAOE\) là tứ giác nội tiếp (đpcm).

a2. Chứng minh : \(BH.BO=BD.BC\).

Ta có : \(\hat{ADC}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AD\) là đường cao của \(\Delta ABC\) vuông tại \(A\Rightarrow BD.BC=AB^2\left(1\right).\)

Mặt khác : \(\left\{{}\begin{matrix}OA=OE=R\left(gt\right)\\AB=BE\left(\text{tính chất hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OB\) là đường trung trực của \(AE\Rightarrow\hat{AHB}=90^o\)

\(\Rightarrow AH\) là đường cao của \(\Delta ABC\) vuông tại \(A\Rightarrow BH.BO=AB^2\left(2\right).\)

Từ \(\left(1\right),\left(2\right)\Rightarrow BH.BO=BD.BC\) (đpcm).

b) b1. Chứng minh \(DHOC\) là tứ giác nội tiếp.

Tứ giác \(AHDB:\hat{AHB}=\hat{ADB}=90^o\left(cmt\right)\). Mà hai góc này có đỉnh kề nhau trong tứ giác và cùng nhìn cạnh \(AB\) nên đây là tứ giác nội tiếp \(\Rightarrow\hat{ABH}=\hat{ADH}.\)

Mà : \(\left\{{}\begin{matrix}\hat{ADH}+\hat{HDC}=90^o\left(=\hat{ADC}\left(cmt\right)\right)\\\hat{ABH}+\hat{HAB}=90^o\left(\text{hai góc phụ nhau}\right)\end{matrix}\right.\Rightarrow\hat{HDC}=\hat{HAB}\left(3\right).\)

Mặt khác : \(\hat{AOB}=\hat{HAB}\left(\text{cùng phụ }\hat{ABH}\right)\left(4\right).\)

Từ \(\left(3\right),\left(4\right)\Rightarrow\hat{AOB}=\hat{HDC}\Rightarrow DHOC\) là tứ giác nội tiếp (dấu hiệu nhận biết) (đpcm).

b2. Chứng minh : \(\hat{BHD}=\hat{OHC}\).

Do \(DHOC\) là tứ giác nội tiếp (cmt) \(\Rightarrow\hat{OCD}=\hat{BHD}\left(5\right)\) (cùng bù với \(\hat{OHD}\)) và \(\hat{OHC}=\hat{ODC}\left(6\right)\) (hai góc có đỉnh kề nhau cùng nhìn cạnh \(OC\)).

Mặt khác : \(OA=OD=R\Rightarrow\Delta OAD\) cân tại \(O\Rightarrow\hat{ODA}=\hat{OAD}.\)

Và : \(\left\{{}\begin{matrix}\hat{OAD}+\hat{OCD}=90^o\left(\text{hai góc phụ nhau}\right)\\\hat{ODA}+\hat{ODC}=90^o\left(=\hat{ADC}\right)\end{matrix}\right.\Rightarrow\hat{OCD}=\hat{ODC}\left(7\right).\)

Từ \(\left(5\right),\left(6\right),\left(7\right)\Rightarrow\hat{BHD}=\hat{OHC}\) (đpcm).

c) Chưa nghĩ ra ạ:)

30 tháng 4 2023

16 tháng 2 2021

O A B x C E D M

a, xét tg AEO và CEO có : EO chung

^AEO = ^CEO = 90

OA = OC = r

=> Tg AEO = tg CEO (ch-cgv)

=> ^AOE = ^COE 

xét tg MAO và tg MCO  có : Mo chung

OA = OC = r

=> tg MAO = tg MCO (cg-c)

=> ^MAO = ^MCO 

mà ^MAO = 90

=> ^MCO = 90 => OC _|_ MC

có C thuộc 1/2(o)

=> MC là tt của 1/2(o)

b, xét tứ giác MCOA có : ^MCO = ^MAO = 90

=> ^MCO + ^MAO = 180

=>MCOA nội tiếp

+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM

có MEA = 90 do AC _|_ MO (Gt)

=> ^ADM = ^MEA = 90

=> MDEA nt

19 tháng 5 2018

a, ta có : góc CFH=90°; góc HEB=90°(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AEHF có góc A=gócE=góc F=90°

suy ra AEHF là hcn.

b, vì AEHF là hcn suy ra AEHF nội tiếp suy ra góc AFE=AHE( góc nội tiếp chắn cung AE) (1)

ta lại có: góc AHE=ABH(cùng bù với BAH) (2)

từ 1 và 2 suy ra góc AFE=ABH

mà góc CFE+AFE=180°

suy ra góc CFE+ABH=180°

suy ra BEFC nội tiếp

c, gọi I và K lần lượt là tâm đtròn đường kính HB và HC

gọi O là giao điểm AH và EF

vì AEHF là hcn suy ra OF=OH suy ra tam giác FOH cân tại O

suy ra góc OFH=OHF

vì CFH vuông tại F suy ra KC=KF=KH

suy ra tam giác HKF cân tại K

suy ra góc KFH=KHF

mà góc KHF+FHA=90°

suy ra góc KFH+HFO=90°

suy ra EF là tiếp tuyến của đtròn tâm K

tương tự EF là tiếp tuyến đường tròn tâm I

vậy EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC

5 tháng 6 2019

a)

1. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAEH = 900 (vì là hai góc kề bù). (1)

ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAFH = 900 (vì là hai góc kề bù).(2)

ÐEAF = 900 ( Vì tam giác  ABC vuông tại A) (3)

Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông)

b)  Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn

=>ÐF1=ÐH1 (nội tiếp chắn cung AE) .

Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn  (O1) và (O2)     

 => ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800  mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

c)

Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .

DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.

=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900

=> O1E ^EF .

Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròndường kính BH và HC.

29 tháng 5 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác OMCN có:

∠(OMC) = 90 0  (AC ⊥ OD)

∠(ONC) = 90 0  (CB ⊥ OE)

∠(NCM) = 90 0  (AC ⊥ CB)

⇒ Tứ giác OMCN là hình chữ nhật

26 tháng 11 2022

Làm cho mik ý b và c