K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

a)a<b

=>a+c<b+c(1)

c<d

=>b+c<b+d(2)

Từ 1 và 2 =>a+c<b+d

b)a<b

=>ac<bc(1)

c<d

=>bc<bd(2)

Từ 1 và 2 =>ac<bd

22 tháng 4 2017

a) a<b \(\Rightarrow\) a+c < b+c (1)

c<d\(\Rightarrow\) c+b < d+b (2)

Từ 1 và 2 \(\Rightarrow\)a+c < b+d (dpcm)

b) a<b \(\Rightarrow\) ac < bc ( vì c dương) (1)

c < d\(\Rightarrow\) bc < bd (vì b dương) (2)

Từ 1 và 2 \(\Rightarrow\) ac < bd (đpcm)

Bài 3. Cho đường tròn (O,R), đường kính AB. Từ điểm M bất kỳ trên đường tròn vẽ tiếp tuyến cắt 2 tiếp tuyến tại A, B lần lượt tại C và D. a) Chứng minh CD = CA + DB. b/ Chứng minh 𝐶𝑂𝐷 ̂ = 900 . c) Chứng minh AC . BD = R2 . d) Cho 𝑀𝐴𝐵 ̂ = 600 . CM :  BDM đều, tính cạnh và S BDM theo R. Bài 4. Cho đường tròn (O,R), M ở ngoài đường tròn sao cho OM=2R. Vẽ tiếp tuyến MA của (O) với A là tiếp điểm....
Đọc tiếp

Bài 3. Cho đường tròn (O,R), đường kính AB. Từ điểm M bất kỳ trên đường tròn vẽ tiếp tuyến cắt 2 tiếp tuyến tại A, B lần lượt tại C và D. a) Chứng minh CD = CA + DB. b/ Chứng minh 𝐶𝑂𝐷 ̂ = 900 . c) Chứng minh AC . BD = R2 . d) Cho 𝑀𝐴𝐵 ̂ = 600 . CM :  BDM đều, tính cạnh và S BDM theo R. Bài 4. Cho đường tròn (O,R), M ở ngoài đường tròn sao cho OM=2R. Vẽ tiếp tuyến MA của (O) với A là tiếp điểm. a)  OAM là tam giác gì ? Tính cạnh và góc  OMA ? b) Kẻ tiếp tuyến MB của (O). Chứng minh OM ⊥ AB. c) Vẽ cát tuyến MEF với đường tròn (O) (E nằm giữa M,F). Gọi I là trung điểm của EF. Chứng minh 5 điểm A, O, I, B, M cùng thuộc một đường tròn. Bài 5. Từ điểm A ở ngoài (O,R) với OA = 2R, vẽ 2 tiếp tuyến AB và AC. a) Chứng minh OA là trung trực của BC. b) Tính AB, AC theo R. c) Chứng minh  ABC đều. Tính S ABC . d) Từ 1 điểm M thuộc 𝐵𝐶⏜ nhỏ kẻ tiếp tuyến thứ 3 cắt 2 tiếp tuyến kia tại P và Q. Chứng minh chu vi  APQ có giá trị không đổi khi M thuộc 𝐵𝐶⏜ nhỏ.

0
22 tháng 9 2021

a)Áp dụng AM-GM có:

\(a\sqrt{b-1}\le a.\dfrac{b-1+1}{2}=\dfrac{ab}{2}\)

\(b\sqrt{a-1}\le b.\dfrac{a-1+1}{2}=\dfrac{ab}{2}\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\dfrac{ab}{2}+\dfrac{ab}{2}\)

\(\Leftrightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Dấu "=" xảy ra khi a=b=2

b)Áp dụng bđt bunhiacopxki có:

\(\left(\sqrt{ac}+\sqrt{bd}\right)^2=\left(\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{d}\right)^2\)\(\le\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]=\left(a+b\right)\left(c+d\right)\)

\(\Rightarrow\sqrt{ac}+\sqrt{bd}\le\sqrt{\left(a+b\right)\left(c+d\right)}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{a}}{\sqrt{c}}=\dfrac{\sqrt{b}}{\sqrt{d}}\Leftrightarrow ad=bc\)

22 tháng 9 2021

\(b,\) Áp dụng BĐT Bunhiacopski:

\(\left(a+b\right)\left(c+d\right)=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]\\ \ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)

Dấu \("="\Leftrightarrow ad=bc\)

 

31 tháng 10 2019

Đề phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a)

b)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

(1)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

Chúc bạn học tốt!