A=\(\frac{^{3^2}}{1\cdot4}\)+ \(\frac{3^2}{4\cdot7}\)+ \(\frac{3^2}{7\cdot10}\)+ \(\frac{3^2}{10\cdot13}\)+\(\frac{3^2}{13\cdot16}\)+......+ \(\frac{3^2}{97\cdot100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(=1\left(\frac{1}{1}-\frac{1}{16}\right)\)
\(=1.\frac{15}{16}=\frac{15}{16}\)
1/3.A=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
=>A=\(\frac{99}{100}:\frac{1}{3}\)
=\(\frac{297}{100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3.\left(1-\frac{1}{100}\right)\)
\(A=3.\frac{99}{100}=\frac{297}{100}\)
Các bạn chọn đúng cho mình nhé!
\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(A=1-\frac{1}{16}=\frac{15}{16}\)
A = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{100}\)
\(\Rightarrow A=\frac{24}{100}=\frac{6}{25}\)
\(A=\frac{2}{3}\left[\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right]\)
\(A=\frac{2}{3}\left[\left[\frac{1}{1}-\frac{1}{4}\right]+\left[\frac{1}{4}-\frac{1}{7}\right]+...+\left[\frac{1}{97}-\frac{1}{100}\right]\right]\)
\(A=\frac{2}{3}\left[\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right]\)
\(A=\frac{2}{3}\left[1-\frac{1}{100}\right]=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
AI THẤY ĐÚNG ỦNG HỘ MIK NHÉ
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+..........+\frac{2}{97.100}=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........-\frac{1}{100}\right)\)
\(=\frac{3}{2}\times\frac{99}{100}=\frac{297}{200}\)
Ta có :
\(B=\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+\frac{5}{13.16}\)
\(\frac{3}{5}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(\frac{3}{5}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(\frac{3}{5}B=1-\frac{1}{16}\)
\(B=\frac{15}{16}:\frac{3}{5}\)
\(B=\frac{25}{16}\)
Ủng hộ mk nha !!! ^_^
\(B=\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+\frac{5}{13.16}\)
\(\frac{3}{5}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(\frac{3}{5}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(\frac{3}{5}B=1-\frac{1}{16}\)
\(B=\frac{15}{16}:\frac{3}{5}\)
\(B=\frac{25}{16}\)
\(\Rightarrow A=4.\left[\frac{6}{2.\left(2.4\right)}+\frac{5}{\left(2.4\right).13}+\frac{3}{13.\left(4.4\right)}+\frac{2}{\left(4.4\right).18}+\frac{10}{18.\left(7.4\right)}\right]\)
\(=4.\left(\frac{6}{2.8}+\frac{5}{8.13}+\frac{3}{13.16}+\frac{2}{16.18}+\frac{10}{18.28}\right)=4.\left(\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{18}+\frac{1}{18}-\frac{1}{28}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{28}\right)=4.\frac{13}{28}=\frac{13}{7}\)
A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)
A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{100}\)
A : 3 = \(\frac{99}{100}\)
A = \(\frac{297}{100}\)