Cho hàm số $f(x)=\dfrac{100^x}{100^x+10}$. Chứng minh rằng : nếu a, b là hai số thỏa mãn : $a+b=1$ thì $f(a)+f(b)=1$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(f\left(x\right)=\frac{100^x}{100^x+10}\)
\(\Rightarrow\left\{\begin{matrix}f\left(a\right)=\frac{100^a}{100^a+10}\\f\left(b\right)=\frac{100^b}{100^b+10}\end{matrix}\right.\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}\)
\(=\frac{100^a\left(100^b+10\right)+100^b\left(100^a+10\right)}{100^b\left(100^a+10\right)+10\left(100^a+10\right)}\)
\(=\frac{100^a.100^b+100^a.10+100^b,100^a+100^b.10}{100^b.100^a+100^b.10+100^a.10+100}\)
\(=\frac{100^{a+b}+100^a.10+100^{b+a}+100^b.10}{100^{b+a}+100^b.10+100^a.10+100}\)
Thế \(a+b=1\)
\(\Rightarrow\frac{100+100^a.10+100+100^b.10}{100+100^b.10+100^a.10+100}=1\)
\(\Leftrightarrow f\left(a\right)+f\left(b\right)=1\)
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Ta có:
\(f\left(a\right)+f\left(b\right)=f\left(a\right)+f\left(1-a\right)\\ =\dfrac{100^a}{100^a+10}+\dfrac{100^{1-a}}{100^{1-a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{\dfrac{100}{100^a}}{\dfrac{100}{100^a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{100}{100^a}.\dfrac{100^a}{100+10.100^a}\\ =\dfrac{100^a}{100^a+10}+\dfrac{10}{10+100^a}\\ =\dfrac{100^a+10}{10+100^a}=1\left(đpcm\right)\)