Tam giác ABC vuông tại A, có góc B= 60 độ. Tia phân giác của góc B cắt AC ở D. Từ D kẻ DE vuông góc với BC tại E
a) Chứng minh rằng BA=BE
b) Tính số đo góc EDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆ABD và ∆EBD có:
∠ABD = ∠EBD (BD là phân giác của B)
BD chung
⇒ ∆ABD = ∆EBD (cạnh huyền - góc nhọn)
⇒ BA = BE (hai cạnh tương ứng)
b) Do ∆ABC vuông tại A
⇒ ∠B + ∠C = 90⁰
⇒ ∠C = 90⁰ - ∠B
= 90⁰ - 60⁰
= 30⁰
∆DEC vuông tại E có
∠C = 30⁰
∠EDC + ∠C = 90⁰
⇒ ∠EDC = 90⁰ - ∠C
= 90⁰ - 30⁰
= 60⁰
a: \(\widehat{C}=90^0-60^0=30^0\)
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥CB
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)
b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)
Ta có: ΔABC vuông tại B(gt)
nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)
hay \(\widehat{DCA}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDCA cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(hai cạnh bên)
Xét ΔAED vuông tại E và ΔCED vuông tại E có
DA=DC(cmt)
DE chung
Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)
Suy ra: EA=EC(hai cạnh tương ứng)
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE
b: góc ADE=180-60=120 độ
=>góc EDC=60 độ