Cho tam giác ABC cân tại A. Đường trung tuyến AM. Trên tia đối của tia BC lấy D, trên tia đối CB lấy E sao cho BD = CE
a: Tam giác ADE cân tại A
b: AM là tia phân giác
c: kẻ BH vuông góc AD ,CK vuông góc AE .Chứng minh tam giác AHB=tam giác AKC
d:CM: HK// DE
e: gọi N là giao điểm của HB và CK .Chứng minh AB vuông góc ID
f:CM: HB,AM,CK cùng đi qua điểm I
help me
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE