Cho tam giác ABC vuông tại A (AB<AC). Trên cạnh BC lấy D sao cho DB=BA. Đường vuông góc với BC tại D cắt cạnh AC tại M.
a) So sánh các góc của tam giác ABC.
b) Chứng minh MA=MD.
c) Gọi N là giao điểm của tia BA, DM. Chứng minh tam MNC là tam giác cân.
d) Gọi I là trung điểm của CN. Chứng minh 3 điểm B,M,I thẳng hàng.
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAM vuôg tại A và ΔBDM vuông tại D có
BM chung
BA=BD
=>ΔBAM=ΔBDM
=>MA=MD
c: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
góc AMN=góc DMC
=>ΔMAN=ΔMDC
=>MN=MC