cho tam giác ABC vuong tạiA có AB <AC, Trên tia đối của tia BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt Ac tại D.
(1) CM ràng : Tam giác BAD = Tam giác BED
2) Kẻ AK vuông góc vói BC (K ∊ BC).CM AK//De và AE là tia phân giác của góc DAK
3) Gọi H là giao điểm của BD và A. CM HB + HC <Ab + AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=CH^2+AH^2\)
\(\Leftrightarrow AH^2=AC^2-CH^2=20^2-16^2=144\)
hay AH=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{16}=9\left(cm\right)\)
Ta có: BC=BH+CH(H nằm giữa B và C)
nên BC=9+16=25(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)
hay AB=15(cm)
Vậy: AB=15cm; AH=12cm; BC=25cm; BH=9cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=BH^2+CH^2\)
\(\Leftrightarrow AC^2=5^2+12^2=169\)
hay AC=13(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=28,8+5=33,8(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)
hay \(AB=31.2cm\)
Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm
Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)
hay HB=18(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=18+32=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)
hay AC=40cm
Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm
Xét tam giác amc = tam giác dmb có:
cạnh mc = mb[ giả thiết]
góc amc =dmb[2 góc đối đỉnh]
ta có bd song song với ac nên suy ra góc acm = góc mbd
=> tam giác amc = tam giác dmb [ g.c.g]