K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

Làm nốt phần còn lại của bạn Thắng

(x + y - 5)2 + 2(y - 1)2 - 9 = 0

<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)

\(\Leftrightarrow\left(S-5\right)^2\le9\)

\(\Leftrightarrow-3\le S-5\le3\)

\(\Leftrightarrow2\le S\le8\)

Vậy GTNN là 2 đạt được khi x = y = 1

GTLN là 8 đạt được khi (x, y) = (7, 1)

20 tháng 11 2016

\(x^2+3y^2+2xy-10x-14y+18\)

\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)

\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)

....

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

2 tháng 3 2020

2xy + 3y - 2x - 2 = -5 

=> 2x(y - 1) + 3y - 3 = -6

=> 2x(y - 1) + 3(y - 1) = -6

=> (2x + 3)(y - 1) = -6

2x+31-12-23-36-6
y-16-63-32-21-1
x-1-2-1/2-5/20-33/2-9/2
y7-54-23-120

mà x;y nguyên

=> ta có các cặp số (x;y) thỏa mãn là : (-1;7); (-2;5); (0;3); (-3;-1)

3 tháng 4 2019

Thêm cho cái điều kiện x,y nguyên.

Ta có:\(2xy-10x+3y=33\)

\(\Rightarrow2x\left(y-5\right)+3\left(y-5\right)=33-15\)

\(\Rightarrow\left(y-5\right)\left(2x+3\right)=18\)

Làm nốt.

3 tháng 4 2019

\(2xy-10x+3y=33\)

\(\Leftrightarrow2x\left(y-5\right)+3\left(y-5\right)+15-33=0\)

\(\Leftrightarrow\left(y-5\right)\left(2x+3\right)-18=0\)

\(\Leftrightarrow\left(y-5\right)\left(2x+3\right)=18\)

Lập bảng xét giá trị là xong

31 tháng 12 2021

help me !!!