Giúp em vs ạ
Câu hỏi: Cho ∆ABC vuông tại A có AB=15cm, AC=20cm. Vẽ AH vuông góc với BC tại H.
a) Chứng minh ∆HBA đồng dạng với ∆ABC
b) Tính độ dài các cạnh BC, HA
c) Vẽ tia phân giác của góc BAH cắt BH tại D. Tính độ dài các cạnh DB, DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét hai tam giác HBA và ABC có:
\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
b.
Áp dụng định lý Pitago cho tam giác vuông ABC:
\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Từ câu a ta có: \(\dfrac{HA}{AC}=\dfrac{BA}{BC}\Rightarrow HA=\dfrac{AB.AC}{BC}=12\left(cm\right)\)
c.
Áp dụng định lý Pitago cho tam giác vuông HBA:
\(BH=\sqrt{AB^2-HA^2}=9\left(cm\right)\)
Do AD là phân giác, áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{DH}{AH}\Rightarrow\dfrac{BD}{AB}=\dfrac{BH-BD}{AH}\)
\(\Rightarrow12BD=15\left(9-BD\right)\Rightarrow BD=5\left(cm\right)\)
\(\Rightarrow DH=BH-BD=4\left(cm\right)\)
a. Xét tam giác HAC và tam giác ABC, có:
\(\widehat{C}\) : chung
\(\widehat{AHC}=\widehat{BAC}=90^o\)
Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )
b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)
Áp dụng định lý pytago tam giác ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
c. Tam giác AHB có phân giác AD:
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2)
(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)
Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..
sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ